Furstenberg sets for a fractal set of directions
Authors:
Ursula Molter and Ezequiel Rela
Journal:
Proc. Amer. Math. Soc. 140 (2012), 27532765
MSC (2010):
Primary 28A78, 28A80
Published electronically:
December 1, 2011
MathSciNet review:
2910763
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we study the behavior of the size of Furstenberg sets with respect to the size of the set of directions defining it. For any pair , we will say that a set is an set if there is a subset of the unit circle of Hausdorff dimension at least and, for each direction in , there is a line segment in the direction of such that the Hausdorff dimension of the set is equal to or greater than . The problem is considered in the wider scenario of generalized Hausdorff measures, giving estimates on the appropriate dimension functions for each class of Furstenberg sets. As a corollary of our main results, we obtain that for any . In particular we are able to extend previously known results to the ``endpoint'' case.
 1.
Richard
Delaware, Sets whose Hausdorff measure equals method I outer
measure, Real Anal. Exchange 27 (2001/02),
no. 2, 535–562. MR 1922667
(2003h:28009)
 2.
Richard
Delaware, Every set of finite Hausdorff measure
is a countable union of sets whose Hausdorff measure and content
coincide, Proc. Amer. Math. Soc.
131 (2003), no. 8,
2537–2542 (electronic). MR 1974652
(2004d:28010), 10.1090/S0002993902068259
 3.
Kenneth
Falconer, Fractal geometry, 2nd ed., John Wiley & Sons,
Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR 2118797
(2006b:28001)
 4.
Felix
Hausdorff, Dimension und äußeres Maß, Math.
Ann. 79 (1918), no. 12, 157–179 (German). MR
1511917, 10.1007/BF01457179
 5.
Nets
Hawk Katz and Terence
Tao, Some connections between Falconer’s distance set
conjecture and sets of Furstenburg type, New York J. Math.
7 (2001), 149–187. MR 1856956
(2002i:28013)
 6.
Pertti
Mattila, Geometry of sets and measures in Euclidean spaces,
Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge
University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
(96h:28006)
 7.
Themis
Mitsis, Norm estimates for the Kakeya maximal function with respect
to general measures, Real Anal. Exchange 27
(2001/02), no. 2, 563–572. MR 1922668
(2003g:42029)
 8.
Ursula Molter and Ezequiel Rela.
Small Furstenberg sets. Preprint.
 9.
Ursula
Molter and Ezequiel
Rela, Improving dimension estimates for Furstenbergtype sets,
Adv. Math. 223 (2010), no. 2, 672–688. MR 2565545
(2011a:28021), 10.1016/j.aim.2009.08.019
 10.
C.
A. Rogers, Hausdorff measures, Cambridge University Press,
LondonNew York, 1970. MR 0281862
(43 #7576)
 11.
Terence Tao.
Finite field analogues of the Erdös, Falconer, and Furstenburg problems. http://ftp.math.ucla.edu/~tao/preprints/Expository/finite.dvi.
 12.
Thomas
Wolff, Decay of circular means of Fourier transforms of
measures, Internat. Math. Res. Notices 10 (1999),
547–567. MR 1692851
(2000k:42016), 10.1155/S1073792899000288
 13.
Thomas
H. Wolff, Lectures on harmonic analysis, University Lecture
Series, vol. 29, American Mathematical Society, Providence, RI, 2003.
With a foreword by Charles Fefferman and preface by Izabella Łaba;
Edited by Łaba and Carol Shubin. MR 2003254
(2004e:42002)
 1.
 Richard Delaware.
Sets whose Hausdorff measure equals method I outer measure. Real Anal. Exchange, 27(2):535562, 2001/02. MR 1922667 (2003h:28009)
 2.
 Richard Delaware.
Every set of finite Hausdorff measure is a countable union of sets whose Hausdorff measure and content coincide. Proc. Amer. Math. Soc., 131(8):25372542 (electronic), 2003. MR 1974652 (2004d:28010)
 3.
 Kenneth Falconer.
Fractal geometry. John Wiley & Sons Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications. MR 2118797 (2006b:28001)
 4.
 Felix Hausdorff.
Dimension und äußeres Maß. Math. Ann., 79(12):157179, 1918. MR 1511917
 5.
 Nets Katz and Terence Tao.
Some connections between Falconer's distance set conjecture and sets of Furstenburg type. New York J. Math., 7:149187 (electronic), 2001. MR 1856956 (2002i:28013)
 6.
 Pertti Mattila.
Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890 (96h:28006)
 7.
 Themis Mitsis.
Norm estimates for the Kakeya maximal function with respect to general measures. Real Anal. Exchange, 27(2):563572, 2001/02. MR 1922668 (2003g:42029)
 8.
 Ursula Molter and Ezequiel Rela.
Small Furstenberg sets. Preprint.
 9.
 Ursula Molter and Ezequiel Rela.
Improving dimension estimates for Furstenbergtype sets. Adv. Math., 223(2):672688, 2010. MR 2565545 (2011a:28021)
 10.
 C. A. Rogers.
Hausdorff measures. Cambridge University Press, London, 1970. MR 0281862 (43:7576)
 11.
 Terence Tao.
Finite field analogues of the Erdös, Falconer, and Furstenburg problems. http://ftp.math.ucla.edu/~tao/preprints/Expository/finite.dvi.
 12.
 Thomas Wolff.
Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices, (10):547567, 1999. MR 1692851 (2000k:42016)
 13.
 Thomas H. Wolff.
Lectures on harmonic analysis, volume 29 of University Lecture Series. American Mathematical Society, Providence, RI, 2003. With a foreword by Charles Fefferman and preface by Izabella Łaba, edited by Łaba and Carol Shubin. MR 2003254 (2004e:42002)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
28A78,
28A80
Retrieve articles in all journals
with MSC (2010):
28A78,
28A80
Additional Information
Ursula Molter
Affiliation:
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Capital Federal, Argentina – and – IMASUBA/CONICET, Argentina
Email:
umolter@dm.uba.ar
Ezequiel Rela
Affiliation:
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Capital Federal, Argentina – and – IMASUBA/CONICET, Argentina
Email:
erela@dm.uba.ar
DOI:
http://dx.doi.org/10.1090/S000299392011111110
PII:
S 00029939(2011)111110
Keywords:
Furstenberg sets,
Hausdorff dimension,
dimension function,
Kakeya sets
Received by editor(s):
September 2, 2010
Received by editor(s) in revised form:
March 6, 2011
Published electronically:
December 1, 2011
Additional Notes:
This research is partially supported by grants ANPCyT PICT200600177, CONICET PIP 11220080100398 and UBACyT X149
Communicated by:
Michael T. Lacey
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
