Liouville type theorems for nonlinear elliptic equations on the whole space

Authors:
Hsini Mounir and Sayeb Wahid

Journal:
Proc. Amer. Math. Soc. **140** (2012), 2731-2738

MSC (2000):
Primary 34-XX, 35-XX

DOI:
https://doi.org/10.1090/S0002-9939-2011-11112-2

Published electronically:
November 30, 2011

MathSciNet review:
2910761

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to study the properties of the solutions of in all We obtain Liouville type boundedness for the solutions. We show that on under the assumptions and for some and If does not change sign, we prove that is constant.

**1.**E. Acerbi and N. Fusco,*Regularity for minimizers of non-quadratic functionals: the case*J. Math. Anal. Appl. 140, (1989), 115-135. MR**997847 (90f:49019)****2.**A. Baalal and N. Belhaj Rhouma,*Dirichlet problem for quasilinear elliptic equations.*Electron. J. Differential Equations 2002, No. 82, pp. 1-18. MR**1927896 (2003j:35076)****3.**H. Berestycki, F. Hamel and R. Monneau,*One dimensional symmetry of bounded entire solutions of some elliptic equations.*Duke Math. J. 103 (2000), 375-396. MR**1763653 (2001j:35069)****4.**H. Brezis, F. Merle and T. Rivière,*Quantization effects for in*Archive for Rational Mechanics and Analysis, No. 9318 (1994), 1-27. MR**1268048 (95d:35042)****5.**L. Caffarelli, N. Garofalo and F. Segala,*A gradient bound for entire solutions of quasilinear equations and its consequences.*Comm. Pure Appl. Math. 47 (1994), 1457-1473. MR**1296785 (95k:35030)****6.**L. Damascelli,*Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results.*Ann. Inst. Henri Poincaré, 15 (1998), 493-516. MR**1632933 (99e:35081)****7.**J. I. Diaz,*Nonlinear Partial Differential Equations and Free Boundaries.*Vol. 1.*Elliptic Equations*. Pitman Res. Notes in Math., Vol. 106, Boston, 1985.**8.**Y. Du and Z. Guo,*Liouville type results and eventual flatness of positive solutions for p-Laplacian equations,*Adv. Diff. Eq. 7, No. 12 (2002), 1479-1512. MR**1920542 (2003m:35072)****9.**Y. Du and Z. Guo,*Boundary blow-up solutions and their applications in quasilinear elliptic equations,*J. Anal. Math. 89, No. 1 (2003), 277-302. MR**1981921 (2004c:35123)****10.**Y. Du and L. Ma,*Logistic type equation on by a squeezing method involving boundary blow-up solutions.*J. London Math. Soc. 64 (2001), 107-124. MR**1840774 (2002d:35089)****11.**B. Gidas and L. Nirenberg,*Symmetry and related properties via the maximum principle.*Comm. Math. Phys. 68 (1979), 209-243. MR**544879 (80h:35043)****12.**R. M. Hervé and M. Hervé,*Quelques propriétés des solutions de l'équation de Ginzburg-Landau sur un ouvert de*Potential Analysis 5 (1996), 591-609. MR**1437586 (98g:31002)****13.**L. K. Martinson and K. B. Pavlov,*The effect of magnetic plasticity in non-Newtonian fluids.*Magnit. Gidrodinamika, 2 (1969), 69-75.**14.**L. K. Martinson and K. B. Pavlov,*Unsteady shear flows of a conducting fluid with a rheological power flow.*Magnit. Gidrodinamika, 3 (1970), 5869-5875.**15.**V. M. Mikljukov,*On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion.*Mat. Sb. (N.S.), 111 (Russian) (1980), 42-46. MR**560463 (81j:35037)****16.**Yu. G. Reshetnyak,*Index boundedness condition for mappings with bounded distortion.*Siberian Math. J. 9 (1968), 281-285.**17.**J. Serrin and H. Zou,*Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities.*Acta Math., 189 (2002), 79-142. MR**1946918 (2003j:35107)****18.**K. Uhlenbeck,*Regularity for a class of nonlinear elliptic systems.*Acta Math. 138 (1977), 219-240. MR**0474389 (57:14031)****19.**A. Zhao,*Qualitative properties of solutions of quasilinear equations.*Electronic J. Differential Equations, No. 99 (2003), 1-18.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34-XX,
35-XX

Retrieve articles in all journals with MSC (2000): 34-XX, 35-XX

Additional Information

**Hsini Mounir**

Affiliation:
Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

Email:
Hsini.mounir@ipeit.rnu.tn

**Sayeb Wahid**

Affiliation:
Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

Email:
wahid.sayeb@yahoo.fr

DOI:
https://doi.org/10.1090/S0002-9939-2011-11112-2

Keywords:
Liouville type results,
supersolution,
subsolution,
comparison principle.

Received by editor(s):
October 22, 2010

Received by editor(s) in revised form:
February 14, 2011, and March 4, 2011

Published electronically:
November 30, 2011

Communicated by:
Walter Craig

Article copyright:
© Copyright 2011
American Mathematical Society