Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


On a non-Abelian Poincaré lemma

Author: Theodore Th. Voronov
Journal: Proc. Amer. Math. Soc. 140 (2012), 2855-2872
MSC (2010): Primary 53D17; Secondary 18G50, 58A50, 58C50, 58H05
Published electronically: December 15, 2011
MathSciNet review: 2910772
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a well-known result on solutions of the Maurer-Cartan equation extends to arbitrary (inhomogeneous) odd forms: any such form with values in a Lie superalgebra satisfying $ d\omega +\omega ^2=0$ is gauge-equivalent to a constant,

$\displaystyle \omega =gCg^{-1}-dg\,g^{-1}.$

This follows from a non-Abelian version of a chain homotopy formula making use of multiplicative integrals. An application to Lie algebroids and their non-linear analogs is given.

Constructions presented here generalize to an abstract setting of differential Lie superalgebras where we arrive at the statement that odd elements (not necessarily satisfying the Maurer-Cartan equation) are homotopic--in a certain particular sense--if and only if they are gauge-equivalent.

References [Enhancements On Off] (What's this?)

  • 1. Akira Asada, Nonabelian Poincaré lemma, Differential geometry, Peñíscola 1985, Lecture Notes in Math., vol. 1209, Springer, Berlin, 1986, pp. 37–65. MR 863744, 10.1007/BFb0076619
  • 2. J. Chuang and A. Lazarev, Feynman diagrams and minimal models for operadic algebras, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 317–337. MR 2602998, 10.1112/jlms/jdp073
  • 3. F. R. Gantmacher, Applications of the theory of matrices, Translated by J. L. Brenner, with the assistance of D. W. Bushaw and S. Evanusa, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. MR 0107648
  • 4. A. Kotov and Th. Strobl.
    Characteristic classes associated to $ Q$-bundles.
    2007, arXiv:0711.4106v1 [math.DG].
  • 5. K. C. H. Mackenzie, Drinfel′d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 74–87 (electronic). MR 1650045, 10.1090/S1079-6762-98-00050-X
  • 6. Kirill C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, Cambridge, 2005. MR 2157566
  • 7. O. V. Manturov, A multiplicative integral, Problems in geometry, Vol. 22 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990, pp. 167–215, 219 (Russian). Translated in J. Soviet Math. 55 (1991), no. 5, 2042–2076. MR 1099222
  • 8. I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261
  • 9. Daniel Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95. MR 790678, 10.1016/0040-9383(85)90047-3
  • 10. Dmitry Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–University of California, Berkeley. MR 2699145
  • 11. Dmitry Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson brackets and beyond (Manchester, 2001) Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 169–185. MR 1958835, 10.1090/conm/315/05479
  • 12. M.  Schlessinger and J.  Stasheff.
    Deformation theory and rational homotopy type.
    (Manuscript in preparation.)
  • 13. Th.  Strobl.
    Talks at the conference ``Algebraic Aspects in Geometry'', Bedlewo, Poland, 17-23 October 2007, and the XXVII Workshop on Geometric Methods in Physics, Białowieża, Poland, 29 June to 5 July 2008.
  • 14. A. Yu. Vaĭntrob, Lie algebroids and homological vector fields, Uspekhi Mat. Nauk 52 (1997), no. 2(314), 161–162 (Russian); English transl., Russian Math. Surveys 52 (1997), no. 2, 428–429. MR 1480150, 10.1070/RM1997v052n02ABEH001802
  • 15. Theodore Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids, Quantization, Poisson brackets and beyond (Manchester, 2001) Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 131–168. MR 1958834, 10.1090/conm/315/05478
  • 16. Th. Voronov.
    Mackenzie theory and $ Q$-manifolds.
    arXiv:math/0608111v2 [math.DG].
  • 17. Th. Voronov.
    $ Q$-manifolds and higher analogs of Lie algebroids.
    In XXIX Workshop on Geometric Methods in Physics. AIP CP 1307, pages 191-202. Amer. Inst. Phys., Melville, NY, 2010.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53D17, 18G50, 58A50, 58C50, 58H05

Retrieve articles in all journals with MSC (2010): 53D17, 18G50, 58A50, 58C50, 58H05

Additional Information

Theodore Th. Voronov
Affiliation: School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

Keywords: Maurer–Cartan equation, Lie superalgebras, differential forms, supermanifolds, Lie algebroids, homological vector fields, multiplicative integral, $Q$-manifolds, Quillen’s superconnection
Received by editor(s): December 4, 2009
Received by editor(s) in revised form: March 10, 2011
Published electronically: December 15, 2011
Communicated by: Varghese Mathai
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.