Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Lie algebras with prescribed $ \mathfrak{sl}_3$ decomposition

Authors: Georgia Benkart and Alberto Elduque
Journal: Proc. Amer. Math. Soc. 140 (2012), 2627-2638
MSC (2010): Primary 17B60; Secondary 17A30
Published electronically: December 9, 2011
MathSciNet review: 2910750
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we consider Lie algebras $ \mathcal {L}$ containing a subalgebra isomorphic to $ \mathfrak{sl}_3$ and such that $ \mathcal {L}$ decomposes as a module for that $ \mathfrak{sl}_3$ subalgebra into copies of the adjoint module, the natural three-dimensional module and its dual, and the trivial one-dimensional module. We determine the multiplication in $ \mathcal {L}$ and establish connections with structurable algebras by exploiting symmetry relative to the symmetric group $ \mathsf {S}_4$.

References [Enhancements On Off] (What's this?)

  • 1. B.N. Allison, A class of nonassociative algebras with involution containing the class of Jordan algebras, Math. Ann. 237 (1978), no. 2, 133-156. MR 507909 (81h:17003)
  • 2. B.N. Allison and J.R. Faulkner, Nonassociative coefficient algebras for Steinberg unitary Lie algebras, J. Algebra 161 (1993), no. 1, 1-19. MR 1245840 (94j:17004)
  • 3. Yu. Bahturin and G. Benkart, Constructions in the theory of locally finite simple Lie algebras, J. Lie Theory 14 (2004), no. 1, 243-270. MR 2040179 (2005e:17039)
  • 4. G. Benkart and O. Smirnov, Lie algebras graded by the root system $ \mathsf {BC}_1$, J. Lie Theory 13 (2003), no. 1, 91-132. MR 1958577 (2004a:17034)
  • 5. S. Berman and R.V. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math 108 (1992), no. 2, 323-347. MR 1161095 (93e:17031)
  • 6. A. Elduque and S. Okubo, Lie algebras with $ \mathsf {S}_4$-action and structurable algebras, J. Algebra 307 (2007), no. 2, 864-890. MR 2275376 (2007m:17027)
  • 7. A. Elduque and S. Okubo, $ {\mathsf S}_4$-symmetry on the Tits construction of exceptional Lie algebras and superalgebras, Publ. Mat. 52 (2008), no. 2, 315-346. MR 2436728 (2009g:17008)
  • 8. J.R. Faulkner, Structurable superalgebras of classical type, Commun. Algebra 38 (2010), 3268-3310. MR 2724219
  • 9. N. Jacobson, Exceptional Lie Algebras, Lect. Notes in Pure and Applied Math., Marcel Dekker, Inc., New York, 1971. MR 0284482 (44:1707)
  • 10. V.G. Kac, Infinite Dimensional Lie Algebras, Third Ed., Cambridge University Press, Cambridge, 1990. MR 1104219 (92k:17038)
  • 11. R.D. Schafer, An Introduction to Nonassociative Algebras, Pure and Applied Math. 22, Academic Press, New York and London, 1966. MR 0210757 (35:1643)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B60, 17A30

Retrieve articles in all journals with MSC (2010): 17B60, 17A30

Additional Information

Georgia Benkart
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Alberto Elduque
Affiliation: Departamento de Matemáticas e Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain

Keywords: Lie algebra, $\mathfrak{sl}_{3}$ decomposition, structurable algebra
Received by editor(s): January 3, 2001
Received by editor(s) in revised form: March 7, 2011
Published electronically: December 9, 2011
Additional Notes: Part of this work was done during a visit of the first author to the University of Zaragoza, supported by the Spanish Ministerio de Educación y Ciencia and FEDER (MTM 2007-67884-C04-02).
The second author was supported by the Spanish Ministerios de Educación y Ciencia and Ciencia e Innovación and FEDER (MTM 2007-67884-C04-02 and MTM2010-18370-C04-02) and by the Diputación General de Aragón (Grupo de Investigación de Álgebra)
Dedicated: In memory of Hyo Chul Myung
Communicated by: Gail R. Letzter
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society