Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Equidistribution of Hecke points on the supersingular module

Author: Ricardo Menares
Journal: Proc. Amer. Math. Soc. 140 (2012), 2687-2691
MSC (2010): Primary 11F11, 14H52; Secondary 11F32
Published electronically: December 29, 2011
MathSciNet review: 2910756
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a fixed prime $ p$, we consider the (finite) set of supersingular elliptic curves over $ \overline {\mathbb{F}}_p$. Hecke operators act on this set. We compute the asymptotic frequence with which a given supersingular elliptic curve visits another under this action.

References [Enhancements On Off] (What's this?)

  • 1. Laurent Clozel and Emmanuel Ullmo.
    Équidistribution des points de Hecke.
    In Contributions to automorphic forms, geometry, and number theory, pages 193-254. Johns Hopkins Univ. Press, Baltimore, MD, 2004. MR 2058609 (2005f:11090)
  • 2. Pierre Deligne.
    La conjecture de Weil. I.
    Inst. Hautes Études Sci. Publ. Math. (43):273-307, 1974. MR 0340258 (49:5013)
  • 3. M. Eichler.
    The basis problem for modular forms and the traces of the Hecke operators.
    In Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 75-151. Lecture Notes in Math., Vol. 320. Springer, Berlin, 1973. MR 0485698 (58:5521a)
  • 4. Benedict H. Gross.
    Heights and the special values of $ L$-series.
    In Number theory (Montreal, Que., 1985), volume 7 of CMS Conf. Proc., 7, pages 115-187. Amer. Math. Soc., Providence, RI, 1987. MR 894322 (89c:11082)
  • 5. Toshitsune Miyake.
    Modular forms.
    Springer-Verlag, Berlin, 1989.
    Translated from the Japanese by Yoshitaka Maeda. MR 2194815 (2006g:11084)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F11, 14H52, 11F32

Retrieve articles in all journals with MSC (2010): 11F11, 14H52, 11F32

Additional Information

Ricardo Menares
Affiliation: Facultad de Matematicas, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile

Received by editor(s): January 27, 2011
Received by editor(s) in revised form: March 18, 2011
Published electronically: December 29, 2011
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society