Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Transfer maps and projection formulas


Author: Gonçalo Tabuada
Journal: Proc. Amer. Math. Soc. 140 (2012), 2589-2597
MSC (2000): Primary 18D20, 19D55, 14F05
DOI: https://doi.org/10.1090/S0002-9939-2011-11169-9
Published electronically: December 1, 2011
MathSciNet review: 2910747
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Transfer maps and projection formulas are undoubtedly one of the key tools in the development and computation of (co)homology theories. In this paper we develop a unified treatment of transfer maps and projection formulas in the non-commutative setting of dg categories. As an application, we obtain transfer maps and projection formulas in algebraic $ K$-theory, cyclic homology, topological cyclic homology, and other scheme invariants.


References [Enhancements On Off] (What's this?)

  • 1. A. Blumberg and M. Mandell, Localization theorems in topological Hochschild homology and topological cyclic homology. Available at arXiv:$ 0802.3938$.
  • 2. M. Bökstedt, W. Hsiang, and I. Madsen, The cyclotomic trace and algebraic $ K$-theory of spaces. Invent. Math. 111 (1993), no. 3, 465-539. MR 1202133 (94g:55011)
  • 3. F. Borceux, Handbook of categorical algebra. 2. Encyclopedia of Mathematics and its Applications 51 (1994). Cambridge Univ. Press. MR 1313497 (96g:18001b)
  • 4. D.-C. Cisinski and G. Tabuada, Non-connective $ K$-theory via universal invariants. Compositio Mathematica 147 (2011), 1281-1320.
  • 5. -, Symmetric monoidal structure on non-commutative motives. Available at arXiv: $ 1001.0228\textrm {v}2$. To appear in J. of $ K$-Theory.
  • 6. V. Drinfeld, DG quotients of DG categories. J. Algebra 272 (2004), 643-691. MR 2028075 (2006e:18018)
  • 7. A. Grothendieck, Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6). Lecture Notes in Mathematics 225 (1971).
  • 8. L. Hesselholt and I. Madsen, On the $ K$-theory of local fields. Ann. of Math. (2) 158 (2003), no. 1, 1-113. MR 1998478 (2004k:19003)
  • 9. B. Keller, On differential graded categories. International Congress of Mathematicians (Madrid), Vol. II (2006), 151-190. Eur. Math. Soc., Zürich. MR 2275593 (2008g:18015)
  • 10. -, On the cyclic homology of exact categories. J. Pure Appl. Alg. 136(1) (1999), 1-56. MR 1667558 (99m:18012)
  • 11. -, On the cyclic homology of ringed spaces and schemes. Doc. Math. 3 (1998), 231-259. MR 1647519 (99i:16018)
  • 12. J.-L. Loday, Cyclic homology. Grundlehren der Mathematischen Wissenschaften 301 (1992). Springer-Verlag, Berlin. MR 1217970 (94a:19004)
  • 13. V. Lunts and D. Orlov, Uniqueness of enhancement for triangulated categories. J. Amer. Math. Soc. 23 (2010), 853-908. MR 2629991
  • 14. A. Neeman, Triangulated categories. Ann. Math. Studies 148 (2001). Princeton Univ. Press. MR 1812507 (2001k:18010)
  • 15. D. Quillen, Higher algebraic $ K$-theory. I. Lecture Notes in Mathematics 341 (1973), 85-147. Springer, Berlin. MR 0338129 (49:2895)
  • 16. C. Schlichtkrull, Transfer maps and the cyclotomic trace. Math. Ann. 336 (2006), no. 1, 191-238. MR 2242623 (2007c:16019)
  • 17. M. Schlichting, Negative $ \mbox {K}$-theory of derived categories. Math. Z. 253 (2006), no. 1, 97-134. MR 2206639 (2006i:19003)
  • 18. G. Tabuada, Higher $ K$-theory via universal invariants. Duke Math. J. 145 (2008), no. 1, 121-206. MR 2451292 (2009j:18014)
  • 19. -, Invariants additifs de dg-catégories. Int. Math. Res. Not. 53 (2005), 3309-3339. MR 2196100 (2006k:18018)
  • 20. -, On Drinfeld's DG quotient. J. Algebra 323 (2010), 1226-1240. MR 2584954 (2011a:16022)
  • 21. -, Generalized spectral categories, topological Hochschild homology, and trace maps. Algebraic and Geometric Topology 10 (2010), 137-213. MR 2580431 (2011a:55012)
  • 22. -, Products, multiplicative Chern characters, and finite coefficients via non-commutative motives. Available at arXiv:1101.0731.
  • 23. R. W. Thomason and T. Trobaugh, Higher algebraic $ K$-theory of schemes and of derived categories. Grothendieck Festschrift, Volume III. Volume 88 of Progress in Math., 247-436. Birkhäuser, Boston 1990. MR 1106918 (92f:19001)
  • 24. B. Toën, The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167 (2007), no. 3, 615-667. MR 2276263 (2008a:18006)
  • 25. C. Weibel, The $ K$-book: An introduction to algebraic $ K$-theory. A graduate textbook in progress. Available at http://www.math.rutgers.edu/weibel/Kbook.html.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 18D20, 19D55, 14F05

Retrieve articles in all journals with MSC (2000): 18D20, 19D55, 14F05


Additional Information

Gonçalo Tabuada
Affiliation: Departamento de Matemática e CMA, FCT-UNL, Quinta da Torre, 2829-516 Caparica, Portugal
Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: tabuada@fct.unl.pt, tabuada@math.mit.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11169-9
Keywords: Transfer maps, projection formulas, dg categories, algebraic $K$-theory, cyclic homology, topological cyclic homology, scheme invariants
Received by editor(s): June 25, 2010
Received by editor(s) in revised form: March 4, 2011
Published electronically: December 1, 2011
Additional Notes: The author was partially supported by the FCT-Portugal grant PTDC/MAT/098317/2008.
Communicated by: Brooke Shipley
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society