Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Equations and syzygies of the first secant variety to a smooth curve


Author: Peter Vermeire
Journal: Proc. Amer. Math. Soc. 140 (2012), 2639-2646
MSC (2010): Primary 14N05, 14H99, 13D02
DOI: https://doi.org/10.1090/S0002-9939-2011-11392-3
Published electronically: December 14, 2011
MathSciNet review: 2910751
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ C$ is a linearly normal smooth curve embedded by a line bundle of degree at least $ 2g+3+p$, then the secant variety to the curve satisfies $ N_{3,p}$.


References [Enhancements On Off] (What's this?)

  • 1. J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222. MR 1311347 (96f:14065)
  • 2. E. S. Allman and J. A. Rhodes, Phylogenetic ideals and varieties for the general Markov model, Adv. in Appl. Math. 40 (2008), no. 2, 127-148. MR 2388607 (2008m:60145)
  • 3. A. Bertram, Moduli of rank-2 vector bundles, theta divisors, and the geometry of curves in projective space, J. Diff. Geom. 35 (1992), 429-469. MR 1158344 (93g:14037)
  • 4. M. V. Catalisano, A. V. Geramita, and A. Gimigliano, On the ideals of secant varieties to certain rational varieties, J. Algebra 319 (2008), no. 5, 1913-1931. MR 2392585 (2009g:14068)
  • 5. D. Cox and J. Sidman, Secant varieties of toric varieties, J. Pure Appl. Algebra 209 (2007), no. 3, 651-669. MR 2298847 (2008i:14077)
  • 6. D. Eisenbud, The Geometry of Syzygies, Springer-Verlag, New York, 2005. MR 2103875 (2005h:13021)
  • 7. D. Eisenbud, M. Green, K. Hulek, and S. Popescu, Restricting linear syzygies: Algebra and geometry, Compos. Math. 141 (2005), 1460-1478. MR 2188445 (2006m:14072)
  • 8. D. Eisenbud, J. Koh, and M. Stillman, Determinantal equations for curves of high degree, Amer. J. Math. 110 (1988), no. 3, 513-539. MR 944326 (89g:14023)
  • 9. T. Fisher, The higher secant varieties of an elliptic normal curve, preprint.
  • 10. T. Fujita, Defining equations for certain types of polarized varieties. Complex analysis and algebraic geometry, 165-173. Iwanami Shoten, Tokyo, 1977. MR 0437533 (55:10457)
  • 11. L. Garcia, M. Stillman, and B. Sturmfels, Algebraic geometry of Bayesian networks, J. Symbolic Comput. 39 (2005), no. 3-4, 331-355. MR 2168286 (2006g:68242)
  • 12. A. Ginensky, A generalization of the Clifford index and determinental equations for curves and their secant varieties, PhD thesis, University of Chicago, 2008. MR 2712616
  • 13. M. Green, Koszul cohomology and the geometry of projective varieties, J. Diff. Geom. 19 (1984), 125-171. MR 739785 (85e:14022)
  • 14. J. M. Landsberg and J. Weyman, On secant varieties of compact Hermitian symmetric spaces, J. Pure Appl. Algebra 213 (2009), no. 11, 2075-2086. MR 2533306 (2010i:14095)
  • 15. R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, in Lectures on Riemann surfaces (Trieste, 1987), 500-559, World Sci. Publ., Teaneck, NJ, 1989. MR 1082360 (92f:14006)
  • 16. R. Lazarsfeld and A. Van de Ven, Topics in the geometry of projective space. Recent work of F. L. Zak. With an addendum by Zak. DMV Seminar, 4. Birkhäuser Verlag, Basel, 1984. MR 808175 (87e:14045)
  • 17. D. Mumford, Varieties defined by quadratic equations. 1970 Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), 29-100, Edizioni Cremonese, Rome. MR 0282975 (44:209)
  • 18. M.S. Ravi, Determinantal equations for secant varieties of curves, Comm. Algebra 22 (1994), no. 8, 3103-3106. MR 1272376 (95c:14029)
  • 19. J. Sidman and S. Sullivant, Prolongations and computational algebra, Canad. J. Math. 61 (4) (2009), 930-949. MR 2541390 (2010h:14084)
  • 20. J. Sidman and P. Vermeire, Syzygies of the secant variety of a curve, Algebra and Number Theory 3 (2009), no. 4, 445-465. MR 2525559 (2010j:13026)
  • 21. B. Sturmfels and S. Sullivant, Combinatorial secant varieties, Pure Appl. Math. Q. 2 (2006), no. 3, 867-891. MR 2252121 (2007h:14082)
  • 22. M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317-353. MR 1273268 (95e:14006)
  • 23. P. Vermeire, Some results on secant varieties leading to a geometric flip construction, Compos. Math. 125 (2001), no. 3, 263-282. MR 1818982 (2002c:14027)
  • 24. P. Vermeire, Secant varieties and birational geometry, Math. Z. 242 (2002), no. 1, 75-95. MR 1985451 (2004e:14025)
  • 25. P. Vermeire, Regularity and normality of the secant variety to a projective curve, J. Algebra 319 (2008), no. 3, 1264-1270. MR 2379097 (2009b:14099)
  • 26. P. Vermeire, Arithmetic properties of the secant variety to a projective variety, preprint.
  • 27. H.-C. Graf v. Bothmer and K. Hulek, Geometric syzygies of elliptic normal curves and their secant varieties, Manuscripta Math. 113 (2004), 35-68. MR 2135560 (2006b:14009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14N05, 14H99, 13D02

Retrieve articles in all journals with MSC (2010): 14N05, 14H99, 13D02


Additional Information

Peter Vermeire
Affiliation: Department of Mathematics, 214 Pearce Hall, Central Michigan University, Mount Pleasant, Michigan 48859
Email: p.vermeire@cmich.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11392-3
Received by editor(s): March 8, 2010
Published electronically: December 14, 2011
Communicated by: Irena Peeva
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society