Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On integrability of nonautonomous nonlinear Schrödinger equations
HTML articles powered by AMS MathViewer

by Sergei K. Suslov PDF
Proc. Amer. Math. Soc. 140 (2012), 3067-3082 Request permission

Abstract:

We show, in general, how to transform the nonautonomous nonlinear Schrödinger equation with quadratic Hamiltonians into the standard autonomous form that is completely integrable by the familiar inverse scattering method in nonlinear science. Derivation of the corresponding equivalent nonisospectral Lax pair is also outlined. A few simple integrable systems are discussed.
References
  • Mark J. Ablowitz, David J. Kaup, Alan C. Newell, and Harvey Segur, Nonlinear-evolution equations of physical significance, Phys. Rev. Lett. 31 (1973), 125–127. MR 406176, DOI 10.1103/PhysRevLett.31.125
  • M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR 1149378, DOI 10.1017/CBO9780511623998
  • M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, vol. 302, Cambridge University Press, Cambridge, 2004. MR 2040621
  • Mark J. Ablowitz and Harvey Segur, Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), no. 20, 1103–1106. MR 442981, DOI 10.1103/PhysRevLett.38.1103
  • Mark J. Ablowitz and Harvey Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. MR 642018
  • G. P. Agrawal, Nonlinear Fiber Optics, Forth Edition, Academic Press, New York, 2007.
  • U. Al Khawaja, A comparative analysis of Painlevé, Lax pair, and similarity transformation methods in obtaining the integrability conditions of nonlinear Schrödinger equations, J. Math. Phys. 51 (2010), no. 5, 053506, 11. MR 2666984, DOI 10.1063/1.3397534
  • Rajneesh Atre, Prasanta K. Panigrahi, and G. S. Agarwal, Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation, Phys. Rev. E (3) 73 (2006), no. 5, 056611, 5. MR 2242605, DOI 10.1103/PhysRevE.73.056611
  • R. Balakrishnan, Soliton propagation in nonunivorm media, Phys. Rev. A 32 (1985) #2, 1144–1149.
  • Andrew P. Bassom, Peter A. Clarkson, C. K. Law, and J. Bryce McLeod, Application of uniform asymptotics to the second Painlevé transcendent, Arch. Rational Mech. Anal. 143 (1998), no. 3, 241–271. MR 1650002, DOI 10.1007/s002050050105
  • M. V. Berry, Classical adiabatic angles and quantal adiabatic phase, J. Phys. A 18 (1985), no. 1, 15–27. MR 777620
  • M. Boiti and Gui Zhang Tu, Bäcklund transformations via gauge transformations, Nuovo Cimento B (11) 71 (1982), no. 2, 253–264 (English, with Italian and Russian summaries). MR 685100, DOI 10.1007/BF02721177
  • M. Boiti and F. Pempinelli, Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents, Nuovo Cimento B (11) 59 (1980), no. 1, 40–58 (English, with Italian and Russian summaries). MR 598413, DOI 10.1007/BF02739045
  • J. Bolmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and V. V. Konotop, Localized nonlinear waves in systems with time- and space-modulated nonlinearities, Phys. Rev. Lett. 100 (2008), 164102 (4 pages).
  • K. Bongs and K. Sengstock, Physics with coherent matter waves, Rep. Prog. Phys. 67 (2004), 907–963.
  • Tommaso Brugarino and Michele Sciacca, Integrability of an inhomogeneous nonlinear Schrödinger equation in Bose-Einstein condensates and fiber optics, J. Math. Phys. 51 (2010), no. 9, 093503, 18. MR 2742827, DOI 10.1063/1.3462746
  • Hsing Hen Chen, General derivation of Bäcklund transformations from inverse scattering problems, Phys. Rev. Lett. 33 (1974), 925–928. MR 361484, DOI 10.1103/PhysRevLett.33.925
  • Hsing Hen Chen and Chuan Sheng Liu, Solitons in nonuniform media, Phys. Rev. Lett. 37 (1976), no. 11, 693–697. MR 411488, DOI 10.1103/PhysRevLett.37.693
  • H.-H. Chen and Ch.-Sh. Liu, Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities, Phys. Fluids 21 (1978) #3, 377–380.
  • Sh. Chen and L. Yi, Chirped self-similar solitons of a generalized Schrödinger equation model, Phys. Rev. E 61 (2005), 016606 (4 pages).
  • Peter A. Clarkson, Painlevé analysis of the damped, driven nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), no. 1-2, 109–126. MR 952332, DOI 10.1017/S0308210500026718
  • Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
  • Peter A. Clarkson and J. Bryce McLeod, A connection formula for the second Painlevé transcendent, Arch. Rational Mech. Anal. 103 (1988), no. 2, 97–138. MR 946971, DOI 10.1007/BF00251504
  • Robert Conte, Invariant Painlevé analysis of partial differential equations, Phys. Lett. A 140 (1989), no. 7-8, 383–390. MR 1020742, DOI 10.1016/0375-9601(89)90072-8
  • Robert Conte, The Painlevé approach to nonlinear ordinary differential equations, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, pp. 77–180. MR 1713577
  • Robert Conte, Allan P. Fordy, and Andrew Pickering, A perturbative Painlevé approach to nonlinear differential equations, Phys. D 69 (1993), no. 1-2, 33–58. MR 1245654, DOI 10.1016/0167-2789(93)90179-5
  • R. Conte and M. Musette, Elliptic general analytic solutions, Stud. Appl. Math. 123 (2009), no. 1, 63–81. MR 2538286, DOI 10.1111/j.1467-9590.2009.00447.x
  • Ricardo Cordero-Soto, Raquel M. Lopez, Erwin Suazo, and Sergei K. Suslov, Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields, Lett. Math. Phys. 84 (2008), no. 2-3, 159–178. MR 2415547, DOI 10.1007/s11005-008-0239-6
  • R. Cordero-Soto, E. Suazo and S. K. Suslov, Models of damped oscillators in quantum mechanics, Journal of Physical Mathematics 1 (2009), S090603 (16 pages).
  • Ricardo Cordero-Soto, Erwin Suazo, and Sergei K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians, Ann. Physics 325 (2010), no. 9, 1884–1912. MR 2718565, DOI 10.1016/j.aop.2010.02.020
  • R. Kordero-Soto and S. K. Suslov, Time reversal for modified oscillators, Teoret. Mat. Fiz. 162 (2010), no. 3, 345–380 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 162 (2010), no. 3, 286–316. MR 2682129, DOI 10.1007/s11232-010-0023-5
  • Ricardo Cordero-Soto and Sergei K. Suslov, The degenerate parametric oscillator and Ince’s equation, J. Phys. A 44 (2011), no. 1, 015101, 9. MR 2749099, DOI 10.1088/1751-8113/44/1/015101
  • Christopher M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order. I. Hyperbolic equations of two independent variables, Stud. Appl. Math. 89 (1993), no. 1, 1–61. MR 1213884, DOI 10.1002/sapm19938911
  • Christopher M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order. II. Parabolic and higher-dimensional equations, Stud. Appl. Math. 89 (1993), no. 2, 95–151. MR 1219303, DOI 10.1002/sapm199389295
  • F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71 (1999), 463–512.
  • A. Desgasperis, Resource letter Sol-1: Solitons, Am. J. Phys. 66 (1998) 6, 486–497.
  • Antonio Degasperis, Integrable models in nonlinear optics and soliton solutions, J. Phys. A 43 (2010), no. 43, 434001, 18. MR 2727775, DOI 10.1088/1751-8113/43/43/434001
  • P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 (1993), no. 2, 295–368. MR 1207209, DOI 10.2307/2946540
  • P. A. Deift and X. Zhou, Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), no. 3, 277–337. MR 1322812, DOI 10.1002/cpa.3160480304
  • V. V. Dodonov, I. A. Malkin, and V. I. Man′ko, Integrals of the motion, Green functions, and coherent states of dynamical systems, Internat. J. Theoret. Phys. 14 (1975), no. 1, 37–54. MR 403460, DOI 10.1007/BF01807990
  • V. V. Dodonov and V. I. Man′ko, Invariants and correlated states of nonstationary quantum systems, Trudy Fiz. Inst. Lebedev. 183 (1987), 71–181, 289 (Russian). MR 937883
  • Abdelhalim Ebaid and S. M. Khaled, New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity, J. Comput. Appl. Math. 235 (2011), no. 8, 1984–1992. MR 2763119, DOI 10.1016/j.cam.2010.09.024
  • L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by A. G. Reyman [A. G. Reĭman]. MR 905674, DOI 10.1007/978-3-540-69969-9
  • C. S. Gardner, J. M. Green, M. D. Kruskai and R. M. Miura, Method for solving the Korteweg–deVries equation, Phys. Rev. Lett. 19 (1967) #19, 1095–1097.
  • L. Gagnon and P. Winternitz, Symmetry classes of variable coefficient nonlinear Schrödinger equations, J. Phys. A 26 (1993), no. 23, 7061–7076. MR 1253895
  • J. H. Hannay, Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A 18 (1985), no. 2, 221–230. MR 784910
  • A. Hasegawa, Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989.
  • J. He and Y. Li, Designable integrability of the variable coefficient nonlinear Schrödinger equations, Stud. Appl. Math. 126 (2011), no. 1, 1–15. MR 2724563, DOI 10.1111/j.1467-9590.2010.00495.x
  • X-G. He, D. Zhao, L. Lee and H-G. Luo, Engineering integrable nonautonomous Schrödinger equations, Phys. Rev. E 79 (2009), 056610 (9 pages).
  • R. Hirota, Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971) #18, 1192–1194.
  • Ryogo Hirota, The direct method in soliton theory, Cambridge Tracts in Mathematics, vol. 155, Cambridge University Press, Cambridge, 2004. Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson; With a foreword by Jarmo Hietarinta and Nimmo. MR 2085332, DOI 10.1017/CBO9780511543043
  • Y. I. Kruglov, A. C. Peacock and J. D. Harvey, Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients, Phys. Rev. Lett. 90 (2003) #11, 113902 (4 pages).
  • Y. I. Kruglov, A. C. Peacock and J. D. Harvey, Exact solutions of the generalized Schrödinger equation with distributed coefficients, Phys. Rev. E 71 (2005), 1056619 (11 pages).
  • N. A. Kudryashov, Methods of Nonlinear Mathematical Physics, Intellect, Dolgoprudny, 2010 [in Russian].
  • Anjan Kundu, Integrable nonautonomous nonlinear Schrödinger equations are equivalent to the standard autonomous equation, Phys. Rev. E (3) 79 (2009), no. 1, 015601, 4. MR 2552199, DOI 10.1103/PhysRevE.79.015601
  • N. Lanfear, R. M. Lopez and S. K. Suslov, Exact wave functions for generalized harmonic oscillators, Journal of Russian Laser Research 32 (2011) #4, 312–321; see also arXiv:11002.5119v1 [math-ph], 24 Feb 2011.
  • N. Lanfear and S. K. Suslov, The time-dependent Schrödinger equation, Riccati equation and Airy functions, arXiv:0903.3608v5 [math-ph], 22 Apr 2009.
  • Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, DOI 10.1002/cpa.3160210503
  • Z. X. Liang, Z. D. Zhang and W. M. Liu, Dynamics of a bright solution in Bose–Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential, Phys. Rev. Lett. 94 (2005) #5, 050402 (4 pages).
  • I. A. Malkin and V. I. Man′ko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, “Nauka”, Moscow, 1979 (Russian). MR 537768
  • I. A. Malkin, V. I. Man’ko and D. A. Trifonov, Linear adiabatic invariants and coherent states, J. Math. Phys. 14 (1973) #5, 576–582.
  • V. B. Matveev and M. A. Salle, Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991. MR 1146435, DOI 10.1007/978-3-662-00922-2
  • Maria Meiler, Ricardo Cordero-Soto, and Sergei K. Suslov, Solution of the Cauchy problem for a time-dependent Schrödinger equation, J. Math. Phys. 49 (2008), no. 7, 072102, 27. MR 2432026, DOI 10.1063/1.2938698
  • Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204. MR 252825, DOI 10.1063/1.1664700
  • Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204–1209. MR 252826, DOI 10.1063/1.1664701
  • J. D. Moores, Nonlinear compression of chirped solitary waves with and without phase modulation, Optics Letters 21 (1996) #8, 555–557.
  • J. D. Moores, Oscilatory solitons in a novel integrable model of asynchronomous mode locking, Optics Letters 21 (2001) #2, 87–89.
  • Micheline Musette, Painlevé analysis for nonlinear partial differential equations, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, pp. 517–572. MR 1713582
  • Micheline Musette and Robert Conte, Analytic solitary waves of nonintegrable equations, Phys. D 181 (2003), no. 1-2, 70–79. MR 2003796, DOI 10.1016/S0167-2789(03)00069-1
  • Alan C. Newell, Nonlinear tunnelling, J. Mathematical Phys. 19 (1978), no. 5, 1126–1133. MR 484112, DOI 10.1063/1.523759
  • S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
  • Peter J. Olver, Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993. MR 1240056, DOI 10.1007/978-1-4612-4350-2
  • A. N. Oraevsky, Bose condensates from the point of view of laser physics, Quantum Electronics 31 (2001) #12, 1038–1057.
  • Víctor M. Pérez-García, Pedro J. Torres, and Vladimir V. Konotop, Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients, Phys. D 221 (2006), no. 1, 31–36. MR 2259120, DOI 10.1016/j.physd.2006.07.002
  • Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. MR 2012737
  • S. Ponomarenko and G. P. Agrawal, Optical similaritons in nonlinear waveguides, Optics Letters 32 (2007) #12, 1659–1661.
  • C. Rogers and W. K. Scheif, Bäcklund Transformation and Darboux Transformation, Cambridge University Press, Cambridge, 2002.
  • Junkichi Satsuma and Nobuo Yajima, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Progr. Theoret. Phys. Suppl. No. 55 , posted on (1974), 284–306. MR 0463733, DOI 10.1143/ptps.55.284
  • Alwyn Scott, Nonlinear science, 2nd ed., Oxford Texts in Applied and Engineering Mathematics, vol. 8, Oxford University Press, Oxford, 2003. Emergence and dynamics of coherent structures. MR 2023425
  • H. Segur and M. J. Ablowitz, Asymptotic solutions of nonlinear equations and a Painlevé transcendent, Physica D 3 (1981) #1–2, 165–184.
  • V. N. Serkin and A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett. 85 (2000) #21, 4502–4505.
  • V. N. Serkin and A. Hasegawa, Soliton management in the nonlinear Schrödinger equation model with varying dispertion, nonlinearity, and gain, JETP Letters 72 (2000) #2, 89–92.
  • V. N. Serkin, A. Hasegawa and T. L. Belyeva, Comment on “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients”, Phys. Rev. Lett. 92 (2004) #19, 199401 (1 page).
  • V. N. Serkin, A. Hasegawa and T. L. Belyeva, Nonautonomous solitons in external potentials, Phys. Rev. Lett. 98 (2007) #7, 074102 (4 pages).
  • V. N. Serkin, A. Hasegawa and T. L. Belyeva, Nonautonomous matter-wave soliton near the Feshbach resonance, Phys. Rev. A 81 (2010), 023610 (19 pages).
  • E. Suazo and S. K. Suslov, Cauchy problem for Schrödinger equation with variable quadratic Hamiltonians, in preparation.
  • E. Suazo and S. K. Suslov, Soliton-like solutions for nonlinear Schrödinger equation with variable quadratic Hamiltonians, arXiv:1010.2504v4 [math-ph], 24 Nov 2010.
  • S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians, Physica Scripta 81 (2010) #5, 055006 (11 pp); see also arXiv:1002.0144v6 [math-ph], 11 Mar 2010.
  • Masayoshi Tajiri, Similarity reductions of the one- and two-dimensional nonlinear Schrödinger equations, J. Phys. Soc. Japan 52 (1983), no. 6, 1908–1917. MR 710726, DOI 10.1143/JPSJ.52.1908
  • Yoshitsugu Takei, On an exact WKB approach to Ablowitz-Segur’s connection problem for the second Painlevé equation, ANZIAM J. 44 (2002), no. 1, 111–119. Kruskal, 2000 (Adelaide). MR 1919931, DOI 10.1017/S1446181100007963
  • Terence Tao, Why are solitons stable?, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 1, 1–33. MR 2457070, DOI 10.1090/S0273-0979-08-01228-7
  • F. D. Tappert and N. J. Zabusky, Gradient-induced fission of solitons, Phys. Rev. Lett. 26 (1971) #26, 1774–1776.
  • C. Trallero-Giner, J. Drake, V. Lopez-Richard, C. Trallero-Herrero and J. L. Birman, Bose–Einstein condensates: Analytical methods for the Gross–Pitaevskii equation, Phys. Lett. A 354 (2006), 115–118.
  • John Weiss, M. Tabor, and George Carnevale, The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983), no. 3, 522–526. MR 692140, DOI 10.1063/1.525721
  • Kurt Bernardo Wolf, On time-dependent quadratic quantum Hamiltonians, SIAM J. Appl. Math. 40 (1981), no. 3, 419–431. MR 614739, DOI 10.1137/0140035
  • Zhenya Yan, The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations, Comput. Phys. Comm. 153 (2003), no. 2, 145–154. MR 1982750, DOI 10.1016/S0010-4655(03)00207-8
  • Zhenya Yan, An improved algebra method and its applications in nonlinear wave equations, Chaos Solitons Fractals 21 (2004), no. 4, 1013–1021. MR 2042818, DOI 10.1016/j.chaos.2003.12.042
  • Zhenya Yan, Exact analytical solutions for the generalized non-integrable nonlinear Schrödinger equation with varying coefficients, Phys. Lett. A 374 (2010), no. 48, 4838–4843. MR 2734517, DOI 10.1016/j.physleta.2010.09.070
  • Z. Yan and V. V. Konotop, Exact solutions to three-dimensional generalized nonlinear Schrödinger equation with varying potential and nonlinearities, Phys. Rev. E 80 (2009), 036607 (9 pages).
  • K-H. Yeon, K-K. Lee, Ch-I. Um, T. F. George and L. N. Pandey, Exact quantum theory of a time-dependent bound Hamiltonian systems, Phys. Rev. A 48 (1993) #4, 2716–2720.
  • V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
  • V. E. Zaharov and A. B. Šabat, A plan for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 43–53 (Russian). MR 0481668
  • V. E. Zaharov and A. B. Šabat, Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3, 13–22 (Russian). MR 545363
  • X.-F. Zhang, Q. Yang, J.-F. Zhang, X. Z. Chen and W. M. Liu, Controlling soliton interactions in Bose–Einstein condensates by synchronizing the Feshbach resonance and harmonic trap, Phys. Rev. A 77 (2008), 023613 (7 pages).
Similar Articles
Additional Information
  • Sergei K. Suslov
  • Affiliation: School of Mathematical and Statistical Sciences and the Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona 85287–1804
  • Email: sks@asu.edu
  • Received by editor(s): March 18, 2011
  • Published electronically: December 30, 2011
  • Communicated by: Ken Ono
  • © Copyright 2011 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 140 (2012), 3067-3082
  • MSC (2010): Primary 35Q55, 35Q51; Secondary 35P30, 81Q05
  • DOI: https://doi.org/10.1090/S0002-9939-2011-11176-6
  • MathSciNet review: 2917080