Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

On integrability of nonautonomous nonlinear Schrödinger equations


Author: Sergei K. Suslov
Journal: Proc. Amer. Math. Soc. 140 (2012), 3067-3082
MSC (2010): Primary 35Q55, 35Q51; Secondary 35P30, 81Q05
Published electronically: December 30, 2011
MathSciNet review: 2917080
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show, in general, how to transform the nonautonomous nonlinear Schrödinger equation with quadratic Hamiltonians into the standard autonomous form that is completely integrable by the familiar inverse scattering method in nonlinear science. Derivation of the corresponding equivalent nonisospectral Lax pair is also outlined. A few simple integrable systems are discussed.


References [Enhancements On Off] (What's this?)

  • 1. Mark J. Ablowitz, David J. Kaup, Alan C. Newell, and Harvey Segur, Nonlinear-evolution equations of physical significance, Phys. Rev. Lett. 31 (1973), 125–127. MR 0406176
  • 2. M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR 1149378
  • 3. M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, vol. 302, Cambridge University Press, Cambridge, 2004. MR 2040621
  • 4. Mark J. Ablowitz and Harvey Segur, Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), no. 20, 1103–1106. MR 0442981
  • 5. Mark J. Ablowitz and Harvey Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. MR 642018
  • 6. G. P. Agrawal, Nonlinear Fiber Optics, Forth Edition, Academic Press, New York, 2007.
  • 7. U. Al Khawaja, A comparative analysis of Painlevé, Lax pair, and similarity transformation methods in obtaining the integrability conditions of nonlinear Schrödinger equations, J. Math. Phys. 51 (2010), no. 5, 053506, 11. MR 2666984, 10.1063/1.3397534
  • 8. Rajneesh Atre, Prasanta K. Panigrahi, and G. S. Agarwal, Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation, Phys. Rev. E (3) 73 (2006), no. 5, 056611, 5. MR 2242605, 10.1103/PhysRevE.73.056611
  • 9. R. Balakrishnan, Soliton propagation in nonunivorm media, Phys. Rev. A 32 (1985) #2, 1144-1149.
  • 10. Andrew P. Bassom, Peter A. Clarkson, C. K. Law, and J. Bryce McLeod, Application of uniform asymptotics to the second Painlevé transcendent, Arch. Rational Mech. Anal. 143 (1998), no. 3, 241–271. MR 1650002, 10.1007/s002050050105
  • 11. M. V. Berry, Classical adiabatic angles and quantal adiabatic phase, J. Phys. A 18 (1985), no. 1, 15–27. MR 777620
  • 12. M. Boiti and Gui Zhang Tu, Bäcklund transformations via gauge transformations, Nuovo Cimento B (11) 71 (1982), no. 2, 253–264 (English, with Italian and Russian summaries). MR 685100, 10.1007/BF02721177
  • 13. M. Boiti and F. Pempinelli, Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents, Nuovo Cimento B (11) 59 (1980), no. 1, 40–58 (English, with Italian and Russian summaries). MR 598413, 10.1007/BF02739045
  • 14. J. Bolmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and V. V. Konotop, Localized nonlinear waves in systems with time- and space-modulated nonlinearities, Phys. Rev. Lett. 100 (2008), 164102 (4 pages).
  • 15. K. Bongs and K. Sengstock, Physics with coherent matter waves, Rep. Prog. Phys. 67 (2004), 907-963.
  • 16. Tommaso Brugarino and Michele Sciacca, Integrability of an inhomogeneous nonlinear Schrödinger equation in Bose-Einstein condensates and fiber optics, J. Math. Phys. 51 (2010), no. 9, 093503, 18. MR 2742827, 10.1063/1.3462746
  • 17. Hsing Hen Chen, General derivation of Bäcklund transformations from inverse scattering problems, Phys. Rev. Lett. 33 (1974), 925–928. MR 0361484
  • 18. Hsing Hen Chen and Chuan Sheng Liu, Solitons in nonuniform media, Phys. Rev. Lett. 37 (1976), no. 11, 693–697. MR 0411488
  • 19. H.-H. Chen and Ch.-Sh. Liu, Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities, Phys. Fluids 21 (1978) #3, 377-380.
  • 20. Sh. Chen and L. Yi, Chirped self-similar solitons of a generalized Schrödinger equation model, Phys. Rev. E 61 (2005), 016606 (4 pages).
  • 21. Peter A. Clarkson, Painlevé analysis of the damped, driven nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), no. 1-2, 109–126. MR 952332, 10.1017/S0308210500026718
  • 22. Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
  • 23. Peter A. Clarkson and J. Bryce McLeod, A connection formula for the second Painlevé transcendent, Arch. Rational Mech. Anal. 103 (1988), no. 2, 97–138. MR 946971, 10.1007/BF00251504
  • 24. Robert Conte, Invariant Painlevé analysis of partial differential equations, Phys. Lett. A 140 (1989), no. 7-8, 383–390. MR 1020742, 10.1016/0375-9601(89)90072-8
  • 25. Robert Conte, The Painlevé approach to nonlinear ordinary differential equations, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, pp. 77–180. MR 1713577
  • 26. Robert Conte, Allan P. Fordy, and Andrew Pickering, A perturbative Painlevé approach to nonlinear differential equations, Phys. D 69 (1993), no. 1-2, 33–58. MR 1245654, 10.1016/0167-2789(93)90179-5
  • 27. R. Conte and M. Musette, Elliptic general analytic solutions, Stud. Appl. Math. 123 (2009), no. 1, 63–81. MR 2538286, 10.1111/j.1467-9590.2009.00447.x
  • 28. Ricardo Cordero-Soto, Raquel M. Lopez, Erwin Suazo, and Sergei K. Suslov, Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields, Lett. Math. Phys. 84 (2008), no. 2-3, 159–178. MR 2415547, 10.1007/s11005-008-0239-6
  • 29. R. Cordero-Soto, E. Suazo and S. K. Suslov, Models of damped oscillators in quantum mechanics, Journal of Physical Mathematics 1 (2009), S090603 (16 pages).
  • 30. Ricardo Cordero-Soto, Erwin Suazo, and Sergei K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians, Ann. Physics 325 (2010), no. 9, 1884–1912. MR 2718565, 10.1016/j.aop.2010.02.020
  • 31. R. Kordero-Soto and S. K. Suslov, Time reversal for modified oscillators, Teoret. Mat. Fiz. 162 (2010), no. 3, 345–380 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 162 (2010), no. 3, 286–316. MR 2682129, 10.1007/s11232-010-0023-5
  • 32. Ricardo Cordero-Soto and Sergei K. Suslov, The degenerate parametric oscillator and Ince’s equation, J. Phys. A 44 (2011), no. 1, 015101, 9. MR 2749099, 10.1088/1751-8113/44/1/015101
  • 33. Christopher M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order. I. Hyperbolic equations of two independent variables, Stud. Appl. Math. 89 (1993), no. 1, 1–61. MR 1213884, 10.1002/sapm19938911
  • 34. Christopher M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order. II. Parabolic and higher-dimensional equations, Stud. Appl. Math. 89 (1993), no. 2, 95–151. MR 1219303, 10.1002/sapm199389295
  • 35. F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71 (1999), 463-512.
  • 36. A. Desgasperis, Resource letter Sol-1: Solitons, Am. J. Phys. 66 (1998) 6, 486-497.
  • 37. Antonio Degasperis, Integrable models in nonlinear optics and soliton solutions, J. Phys. A 43 (2010), no. 43, 434001, 18. MR 2727775, 10.1088/1751-8113/43/43/434001
  • 38. P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 (1993), no. 2, 295–368. MR 1207209, 10.2307/2946540
  • 39. P. A. Deift and X. Zhou, Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), no. 3, 277–337. MR 1322812, 10.1002/cpa.3160480304
  • 40. V. V. Dodonov, I. A. Malkin, and V. I. Man′ko, Integrals of the motion, Green functions, and coherent states of dynamical systems, Internat. J. Theoret. Phys. 14 (1975), no. 1, 37–54. MR 0403460
  • 41. V. V. Dodonov and V. I. Man′ko, Invariants and correlated states of nonstationary quantum systems, Trudy Fiz. Inst. Lebedev. 183 (1987), 71–181, 289 (Russian). MR 937883
  • 42. Abdelhalim Ebaid and S. M. Khaled, New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity, J. Comput. Appl. Math. 235 (2011), no. 8, 1984–1992. MR 2763119, 10.1016/j.cam.2010.09.024
  • 43. L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by A. G. Reyman [A. G. Reĭman]. MR 905674
  • 44. C. S. Gardner, J. M. Green, M. D. Kruskai and R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett. 19 (1967) #19, 1095-1097.
  • 45. L. Gagnon and P. Winternitz, Symmetry classes of variable coefficient nonlinear Schrödinger equations, J. Phys. A 26 (1993), no. 23, 7061–7076. MR 1253895
  • 46. J. H. Hannay, Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A 18 (1985), no. 2, 221–230. MR 784910
  • 47. A. Hasegawa, Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989.
  • 48. J. He and Y. Li, Designable integrability of the variable coefficient nonlinear Schrödinger equations, Stud. Appl. Math. 126 (2011), no. 1, 1–15. MR 2724563, 10.1111/j.1467-9590.2010.00495.x
  • 49. X-G. He, D. Zhao, L. Lee and H-G. Luo, Engineering integrable nonautonomous Schrödinger equations, Phys. Rev. E 79 (2009), 056610 (9 pages).
  • 50. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971) #18, 1192-1194.
  • 51. Ryogo Hirota, The direct method in soliton theory, Cambridge Tracts in Mathematics, vol. 155, Cambridge University Press, Cambridge, 2004. Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson; With a foreword by Jarmo Hietarinta and Nimmo. MR 2085332
  • 52. Y. I. Kruglov, A. C. Peacock and J. D. Harvey, Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients, Phys. Rev. Lett. 90 (2003) #11, 113902 (4 pages).
  • 53. Y. I. Kruglov, A. C. Peacock and J. D. Harvey, Exact solutions of the generalized Schrödinger equation with distributed coefficients, Phys. Rev. E 71 (2005), 1056619 (11 pages).
  • 54. N. A. Kudryashov, Methods of Nonlinear Mathematical Physics, Intellect, Dolgoprudny, 2010 [in Russian].
  • 55. Anjan Kundu, Integrable nonautonomous nonlinear Schrödinger equations are equivalent to the standard autonomous equation, Phys. Rev. E (3) 79 (2009), no. 1, 015601, 4. MR 2552199, 10.1103/PhysRevE.79.015601
  • 56. N. Lanfear, R. M. Lopez and S. K. Suslov, Exact wave functions for generalized harmonic oscillators, Journal of Russian Laser Research 32 (2011) #4, 312-321; see also arXiv:11002.5119v1 [math-ph], 24 Feb 2011.
  • 57. N. Lanfear and S. K. Suslov, The time-dependent Schrödinger equation, Riccati equation and Airy functions, arXiv:0903.3608v5 [math-ph], 22 Apr 2009.
  • 58. Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 0235310
  • 59. Z. X. Liang, Z. D. Zhang and W. M. Liu, Dynamics of a bright solution in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential, Phys. Rev. Lett. 94 (2005) #5, 050402 (4 pages).
  • 60. I. A. Malkin and V. I. Man′ko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, “Nauka”, Moscow, 1979 (Russian). MR 537768
  • 61. I. A. Malkin, V. I. Man'ko and D. A. Trifonov, Linear adiabatic invariants and coherent states, J. Math. Phys. 14 (1973) #5, 576-582.
  • 62. V. B. Matveev and M. A. Salle, Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991. MR 1146435
  • 63. Maria Meiler, Ricardo Cordero-Soto, and Sergei K. Suslov, Solution of the Cauchy problem for a time-dependent Schrödinger equation, J. Math. Phys. 49 (2008), no. 7, 072102, 27. MR 2432026, 10.1063/1.2938698
  • 64. Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204. MR 0252825
  • 65. Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204–1209. MR 0252826
  • 66. J. D. Moores, Nonlinear compression of chirped solitary waves with and without phase modulation, Optics Letters 21 (1996) #8, 555-557.
  • 67. J. D. Moores, Oscilatory solitons in a novel integrable model of asynchronomous mode locking, Optics Letters 21 (2001) #2, 87-89.
  • 68. Micheline Musette, Painlevé analysis for nonlinear partial differential equations, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, pp. 517–572. MR 1713582
  • 69. Micheline Musette and Robert Conte, Analytic solitary waves of nonintegrable equations, Phys. D 181 (2003), no. 1-2, 70–79. MR 2003796, 10.1016/S0167-2789(03)00069-1
  • 70. Alan C. Newell, Nonlinear tunnelling, J. Mathematical Phys. 19 (1978), no. 5, 1126–1133. MR 0484112
  • 71. S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
  • 72. Peter J. Olver, Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993. MR 1240056
  • 73. A. N. Oraevsky, Bose condensates from the point of view of laser physics, Quantum Electronics 31 (2001) #12, 1038-1057.
  • 74. Víctor M. Pérez-García, Pedro J. Torres, and Vladimir V. Konotop, Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients, Phys. D 221 (2006), no. 1, 31–36. MR 2259120, 10.1016/j.physd.2006.07.002
  • 75. Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. MR 2012737
  • 76. S. Ponomarenko and G. P. Agrawal, Optical similaritons in nonlinear waveguides, Optics Letters 32 (2007) #12, 1659-1661.
  • 77. C. Rogers and W. K. Scheif, Bäcklund Transformation and Darboux Transformation, Cambridge University Press, Cambridge, 2002.
  • 78. Junkichi Satsuma and Nobuo Yajima, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Progr. Theoret. Phys. Suppl. No. 55 (1974), 284–306. MR 0463733
  • 79. Alwyn Scott, Nonlinear science, 2nd ed., Oxford Texts in Applied and Engineering Mathematics, vol. 8, Oxford University Press, Oxford, 2003. Emergence and dynamics of coherent structures. MR 2023425
  • 80. H. Segur and M. J. Ablowitz, Asymptotic solutions of nonlinear equations and a Painlevé transcendent, Physica D 3 (1981) #1-2, 165-184.
  • 81. V. N. Serkin and A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett. 85 (2000) #21, 4502-4505.
  • 82. V. N. Serkin and A. Hasegawa, Soliton management in the nonlinear Schrödinger equation model with varying dispertion, nonlinearity, and gain, JETP Letters 72 (2000) #2, 89-92.
  • 83. V. N. Serkin, A. Hasegawa and T. L. Belyeva, Comment on ``Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients'', Phys. Rev. Lett. 92 (2004) #19, 199401 (1 page).
  • 84. V. N. Serkin, A. Hasegawa and T. L. Belyeva, Nonautonomous solitons in external potentials, Phys. Rev. Lett. 98 (2007) #7, 074102 (4 pages).
  • 85. V. N. Serkin, A. Hasegawa and T. L. Belyeva, Nonautonomous matter-wave soliton near the Feshbach resonance, Phys. Rev. A 81 (2010), 023610 (19 pages).
  • 86. E. Suazo and S. K. Suslov, Cauchy problem for Schrödinger equation with variable quadratic Hamiltonians, in preparation.
  • 87. E. Suazo and S. K. Suslov, Soliton-like solutions for nonlinear Schrödinger equation with variable quadratic Hamiltonians, arXiv:1010.2504v4 [math-ph], 24 Nov 2010.
  • 88. S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians, Physica Scripta 81 (2010) #5, 055006 (11 pp); see also arXiv:1002.0144v6 [math-ph], 11 Mar 2010.
  • 89. Masayoshi Tajiri, Similarity reductions of the one- and two-dimensional nonlinear Schrödinger equations, J. Phys. Soc. Japan 52 (1983), no. 6, 1908–1917. MR 710726, 10.1143/JPSJ.52.1908
  • 90. Yoshitsugu Takei, On an exact WKB approach to Ablowitz-Segur’s connection problem for the second Painlevé equation, ANZIAM J. 44 (2002), no. 1, 111–119. Kruskal, 2000 (Adelaide). MR 1919931, 10.1017/S1446181100007963
  • 91. Terence Tao, Why are solitons stable?, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 1, 1–33. MR 2457070, 10.1090/S0273-0979-08-01228-7
  • 92. F. D. Tappert and N. J. Zabusky, Gradient-induced fission of solitons, Phys. Rev. Lett. 26 (1971) #26, 1774-1776.
  • 93. C. Trallero-Giner, J. Drake, V. Lopez-Richard, C. Trallero-Herrero and J. L. Birman, Bose-Einstein condensates: Analytical methods for the Gross-Pitaevskii equation, Phys. Lett. A 354 (2006), 115-118.
  • 94. John Weiss, M. Tabor, and George Carnevale, The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983), no. 3, 522–526. MR 692140, 10.1063/1.525721
  • 95. Kurt Bernardo Wolf, On time-dependent quadratic quantum Hamiltonians, SIAM J. Appl. Math. 40 (1981), no. 3, 419–431. MR 614739, 10.1137/0140035
  • 96. Zhenya Yan, The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations, Comput. Phys. Comm. 153 (2003), no. 2, 145–154. MR 1982750, 10.1016/S0010-4655(03)00207-8
  • 97. Zhenya Yan, An improved algebra method and its applications in nonlinear wave equations, Chaos Solitons Fractals 21 (2004), no. 4, 1013–1021. MR 2042818, 10.1016/j.chaos.2003.12.042
  • 98. Zhenya Yan, Exact analytical solutions for the generalized non-integrable nonlinear Schrödinger equation with varying coefficients, Phys. Lett. A 374 (2010), no. 48, 4838–4843. MR 2734517, 10.1016/j.physleta.2010.09.070
  • 99. Z. Yan and V. V. Konotop, Exact solutions to three-dimensional generalized nonlinear Schrödinger equation with varying potential and nonlinearities, Phys. Rev. E 80 (2009), 036607 (9 pages).
  • 100. K-H. Yeon, K-K. Lee, Ch-I. Um, T. F. George and L. N. Pandey, Exact quantum theory of a time-dependent bound Hamiltonian systems, Phys. Rev. A 48 (1993) #4, 2716-2720.
  • 101. V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
  • 102. V. E. Zaharov and A. B. Šabat, A plan for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 43–53 (Russian). MR 0481668
  • 103. V. E. Zaharov and A. B. Šabat, Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3, 13–22 (Russian). MR 545363
  • 104. X.-F. Zhang, Q. Yang, J.-F. Zhang, X. Z. Chen and W. M. Liu, Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap, Phys. Rev. A 77 (2008), 023613 (7 pages).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35Q55, 35Q51, 35P30, 81Q05

Retrieve articles in all journals with MSC (2010): 35Q55, 35Q51, 35P30, 81Q05


Additional Information

Sergei K. Suslov
Affiliation: School of Mathematical and Statistical Sciences and the Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona 85287–1804
Email: sks@asu.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11176-6
Keywords: Nonlinear Schrödinger equations, generalized harmonic oscillators, Green’s function, propagator, completely integrable systems, Lax pair, Zakharov–Shabat system.
Received by editor(s): March 18, 2011
Published electronically: December 30, 2011
Communicated by: Ken Ono
Article copyright: © Copyright 2011 American Mathematical Society