Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Deformations of pairs $ (X,L)$ when $ X$ is singular


Author: Jie Wang
Journal: Proc. Amer. Math. Soc. 140 (2012), 2953-2966
MSC (2010): Primary 14B10, 14B12
DOI: https://doi.org/10.1090/S0002-9939-2011-11230-9
Published electronically: December 29, 2011
MathSciNet review: 2917069
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an elementary construction of the tangent obstruction theory of the deformations of the pair $ (X,L)$ with $ X$ a reduced local complete intersection scheme and $ L$ a line bundle on $ X$. This generalizes the classical deformation theory of pairs in the case when $ X$ is smooth. A criteria for sections of $ L$ to extend is also given.


References [Enhancements On Off] (What's this?)

  • 1. Arbarello, E, Cornalba, M.: Su una congettura di Petri. Comment. Math. Helvetici 56, 1-38, 1981. MR 615613 (82k:14029)
  • 2. Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves, Volume I. Springer Grundlehren 267, 1985. MR 770932 (86h:14019)
  • 3. Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Special Divisors on Algebraic Curves. Regional Algebraic Geometry Conference. Athens, Georgia, May 1979.
  • 4. Altmann, K., Christophersen, J.: Deforming Stanley-Reisner schemes. Math. Ann. 348 (2010), no. 3, 513-537. MR 2677892
  • 5. Eisenbud, D., Harris, J.: Limit linear series: Basic theory. Invent. Math. 85, 337-371, 1986. MR 846932 (87k:14024)
  • 6. Harris, J.: Curves in projective space. Les Press de l'Université de Montréal, 1982. MR 685427 (84g:14024)
  • 7. Harris, J., Morrison, I.: Moduli of Curves. Graduate Text in Mathematics 187, Springer-Verlag, New York, 1998. MR 1631825 (99g:14031)
  • 8. Illusie, L.: Complex Cotangent et Déformations I. Lecture Notes in Mathematics 239, Springer-Verlag, 1971. MR 0491680 (58:10886a)
  • 9. Illusie, L.: Complex Cotangent et Déformations II. Lecture Notes in Mathematics 283, Springer-Verlag, 1972. MR 0491681 (58:10886b)
  • 10. Sernesi, E.: Deformations of Algebraic Schemes. Springer Grundlehren 334, 2006. MR 2247603 (2008e:14011)
  • 11. Vistoli, A.: The deformation theory of local complete intersections. http://arxiv.org/
    abs/alg-geom/9703008

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14B10, 14B12

Retrieve articles in all journals with MSC (2010): 14B10, 14B12


Additional Information

Jie Wang
Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210
Email: jwang@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11230-9
Keywords: Deformations of the pair, tangent obstruction theory, local complete intersection
Received by editor(s): March 18, 2011
Published electronically: December 29, 2011
Communicated by: Lev Borisov
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society