Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strictly convex norms, $ G_\delta$-diagonals and non-Gruenhage spaces


Author: Richard J. Smith
Journal: Proc. Amer. Math. Soc. 140 (2012), 3117-3125
MSC (2010): Primary 46B03, 54G12
DOI: https://doi.org/10.1090/S0002-9939-2012-11142-6
Published electronically: January 4, 2012
MathSciNet review: 2917084
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an example in ZFC of a locally compact, scattered Hausdorff non-Gruenhage space $ D$ having a $ G_\delta $-diagonal. This means that Gruenhage spaces are not necessary for the construction of strictly convex dual norms on dual Banach spaces, answering a question posed by Orihuela, Troyanski and the author. In addition, we show that the Banach space of continuous functions $ C_0(D)$ admits a $ C^\infty $-smooth bump function.


References [Enhancements On Off] (What's this?)

  • 1. G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, 1984, 235-293. MR 776629 (86h:54038)
  • 2. G. Gruenhage, A note on Gul'ko compact spaces, Proc. Amer. Math. Soc. 100 (1987), 371-376. MR 884482 (88f:54046)
  • 3. P. Hájek and R. Haydon, Smooth norms and approximation in Banach spaces of the type $ C(K)$, Q. J. Math. 58 (2007), 221-228. MR 2334863 (2008d:46028)
  • 4. K. P. Hart, Characterizations of $ \mathbb{R}$-embeddable and developable $ \omega _1$-trees, Nederl. Akad.Wetensch. Indag. Math. 44 (1982), 277-283. MR 674899 (84k:04004)
  • 5. R. Haydon, Smooth functions and partitions of unity on certain Banach spaces. Q. J. Math. 47 (1996), 455-468. MR 1460234 (2000c:46080)
  • 6. R. G. Haydon, Trees in renorming theory, Proc. London Math. Soc. 78 (1999), 541-584. MR 1674838 (2000d:46011)
  • 7. J. Orihuela, R. J. Smith and S. Troyanski, Strictly convex norms and topology, to appear in Proc. London Math. Soc. http://arxiv.org/abs/1012.5595v1, DOI:10.1112/plms/pdr034
  • 8. R. J. Smith, Gruenhage compacta and strictly convex dual norms, J. Math. Anal. Appl. 350 (2009), 745-757. MR 2474808 (2009k:46032)
  • 9. R. J. Smith and S. Troyanski, Renormings of C(K) spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 104 (2010), 375-412. MR 2757248

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B03, 54G12

Retrieve articles in all journals with MSC (2010): 46B03, 54G12


Additional Information

Richard J. Smith
Affiliation: School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
Email: richard.smith@ucd.ie

DOI: https://doi.org/10.1090/S0002-9939-2012-11142-6
Received by editor(s): February 4, 2011
Received by editor(s) in revised form: March 21, 2011
Published electronically: January 4, 2012
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society