COMPLETELY POSITIVE MATRIX NUMERICAL INDEX
ON MATRIX REGULAR OPERATOR SPACES

XU-JIAN HUANG

(Communicated by Marius Junge)

Abstract. In the article, we compute the completely positive matrix numerical index of matrix regular operator spaces and show that they take values in the interval \(\left[\frac{1}{2}, 1 \right] \). Moreover, we show that the dual of a unital operator system has the completely positive matrix numerical index \(\frac{1}{2} \) if its dimension is greater than 1. Furthermore, both \(S_p(H) \) and \(L_p(M) \) have the completely positive matrix numerical index \(2 - \frac{1}{p} \) if their dimensions are greater than 1, where \(p \in [1, +\infty) \), \(H \) is a Hilbert space and \(M \) is a finite von Neumann algebra.

1. Introduction

The completely positive matrix numerical index \(n_{cb}^+(V) \) of a matrix pre-ordered operator space \(V \) is a constant based on the matrix norm and the matrix order of the space. It was used in [10] to characterize (non-unital) operator systems (in fact non-selfadjoint, non-unital operator systems are considered in [10]). By a (non-unital) operator system, we mean a selfadjoint linear subspace of some \(L(H) \) equipped with the induced matrix order operator space structure. Let us recall the relevant definitions. Let \(V \) be a matrix pre-ordered operator space. We define the completely positive \(n \)-matrix state space
\[
Q^V_n := \{ \varphi \in CB(V, M_n) : \varphi \in CP(V, M_n), \| \varphi \|_{cb} \leq 1 \},
\]
and the completely positive matrix numerical radius of an element \(x \) in \(M_n(V)(n \in \mathbb{N}) \) is defined as
\[
\gamma^+_n(x) := \sup \{ \| \varphi_n(x) \| : \varphi \in Q^V_n, k \in \mathbb{N} \},
\]
as well as the completely positive matrix numerical index of \(V \) is given by
\[
n_{cb}^+(V) := \inf \{ \gamma^+_n(v) : v \in M_n(V), \| v \|_n = 1, n \in \mathbb{N} \}.
\]
Note that \(n_{cb}^+(V) \) is the greatest constant \(t \geq 0 \) such that \(t\| x \| \leq \gamma^+_n(x) \) for every \(x \in M_k(V) \).

Ng shows in [10] Theorem 2.6] that \(n_{cb}^+(V) = 1 \) (respectively, \(n_{cb}^+(V) > 0 \)) if and only if it is an operator system (respectively, there exist a Hilbert space \(H \) and a map \(\Phi : V \rightarrow B(H) \) which is \(n_{cb}^+(V)^{-1} \)-completely isomorphically and complete order isomorphically). Thus, all unital operator systems have completely positive...

Received by the editors September 10, 2010 and, in revised form, January 10, 2011 and March 23, 2011.

2010 Mathematics Subject Classification. Primary 46L07, 46L52, 47L07.

Key words and phrases. Completely positive matrix numerical index, matrix regular operator space.

©2012 American Mathematical Society

Reverts to public domain 28 years from publication
matrix numerical index 1. A matrix pre-ordered operator space \(V \) is called a \textit{quasi-operator system} if \(n_{cb}^+(V) > 0 \). It may be worth reminding the readers that in some papers (see [3, 4, 14]) the term “operator system” will be used for the matrix pre-order operator space with strictly positive completely positive matrix numerical index and its abstract characterization given by Werner [14, Theorem 4.15].

The purpose of this paper is to compute the completely positive numerical index of classical matrix regular operator spaces. First, we show that \(n_{cb}^+(V) \geq \frac{1}{2} \) for any matrix regular operator space \(V \). This implies Karn’s Theorem [7] that every matrix regular operator space can be embedded into \(\mathcal{L}(H) \) 2-completely isomorphically and complete order isomorphically. We prove that a lot of matrix regular operator spaces of dimension greater than one are quasi-operator systems but not operator systems. In fact, we will prove that the predual of a von Neumann algebra and the dual of a unital operator system, with dimension greater than one, have the completely positive numerical index \(\frac{1}{2} \). Moreover, we exhibit that the spaces \(S_p(H) \) and \(L_p(M) \) for \(1 \leq p < \infty \) have the same completely positive numerical index \(2^{\frac{1}{p}} \), where \(H \) is a Hilbert space of dimension greater than one and \(M \) is a finite von Neumann algebra such that \(\dim(M) > 1 \). This implies that for a matrix regular operator space \(V \), the completely positive numerical index \(n_{cb}^+(V) \) can be any number in the interval \([\frac{1}{2}, 1] \). Finally, we show that \(n_{cb}^+(CB(V, W)) \geq \frac{1}{2} n_{cb}^+(W) \), where \(V \) is a matrix regular operator space and \(W \) is a matrix pre-order operator space. In this case, \(CB(V, W) \) is a quasi-operator system when \(W \) is a quasi-operator system.

2. Preliminaries

A complex involutive vector space \(V \) is called a \textit{matrix pre-ordered vector space} if for each \(n \in \mathbb{N} \) there is a set \(M_n(V)_+ \subseteq M_n(V)_{sa} \) so that

(a) \(M_n(V)_+ \oplus M_m(V)_+ \subseteq M_{n+m}(V)_+ \) for all \(m, n \in \mathbb{N} \),
(b) \(\gamma^* M_n(V)_+ \gamma \subseteq M_n(V)_+ \) for each \(m, n \in \mathbb{N} \) and all \(\gamma \in M_{m,n} \).

A matrix pre-ordered vector space \(V \) is called a \textit{matrix pre-ordered operator space} if \(V \) is an operator space, its involution is an isometry on \(M_n(V) \) and the cones \(M_n(V)_+ \) are closed for all \(n \in \mathbb{N} \). Following W. Werner [14] we say that \(V \) is a \textit{matrix ordered operator space} if \(M_n(V)_+ \cap -M_n(V)_+ = \{0\} \) for all \(n \in \mathbb{N} \). In fact, if \(V_+ \cap -V_+ = \{0\} \), then \(M_n(V)_+ \cap -M_n(V)_+ = \{0\} \) for all \(n \in \mathbb{N} \) (see [14, Remark 2.2 (ii)]).

Let \(\Phi : V \to W \) be a linear map between two matrix pre-ordered vector spaces \(V \) and \(W \), and define \(\Phi^* \) by \(\Phi^*(v) := \Phi(v^*)^* \). We say that \(\Phi : V \to W \) is \textit{positive} if \(\Phi^* = \Phi \) and \(\Phi(V_+) \subseteq W_+ \). We let \(\Phi_n : M_n(V) \to M_n(W) \) be defined by \(\Phi_n((x_{ij})) := (\Phi(x_{ij})) \) and we call \(\Phi \) \textit{completely positive} if \(\Phi_n \) is positive for all \(n \in \mathbb{N} \). We denote the set of completely positive mappings from \(V \) to \(W \) by \(\text{CP}(V, W) \). An injective completely positive mapping \(\Phi \) is called a \textit{complete order monomorphism} if for all \(n \in \mathbb{N} \), \(\Phi_n(M_n(V)_+) = \Phi_n(M_n(V)) \cap M_n(W)_+ \).

Let \(V \) and \(W \) be matrix ordered operator spaces. We set \(M_n(CB(V, W)) := CB(V, M_n(W)) \cap \text{CP}(V, M_n(W)) \) as well as \(M_n(CB(V, W))_{sa} := \{ \varphi \in CB(V, M_n(W)) : \varphi = \varphi^* \} \).
We claim that a matrix pre-ordered operator space

\[\exists \]

Proof. System.

Then \(\text{CB}(V, W) \) is a matrix pre-ordered operator space (see [12] Proposition 3.1). In particular, if \(W = \mathbb{C} \) we will use the symbol \(V' \) to indicate \(\text{CB}(V, \mathbb{C}) \). In this case, \(M_n(V)'_+ = \text{CB}(V, M_n)'_+ \).

Definition 2.1. A matrix ordered operator space is called a matrix regular (or matrical Riesz) operator space if for each \(n \in \mathbb{N} \) and for all \(v \in M_n(V)_{sa} \),

(a) \(u \in M_n(V)_{sa} \) and \(-u \leq v \leq u \) imply that \(\|v\|_n \leq \|u\|_n \);

(b) \(\|v\|_n < 1 \) implies that there exists \(u \in M_n(V)_{sa} \) such that \(\|u\|_n < 1 \) and \(-u \leq v \leq u \).

Note that examples of matrix ordered regular operator spaces include all unital operator systems and their duals, \(C^\star \)-algebras, the preduals of von Neumann algebras, the Schatten class spaces and the commutative \(L_p \) spaces [13].

The following result is due to the work of W. J. Schreiner [12].

Proposition 2.2. Let \(V \) be a matrix ordered operator space. Then the following are equivalent:

(a) \(V \) is a matrix regular operator space.

(b) \(V' \) is a matrix regular operator space.

(c) For each \(n \in \mathbb{N} \) and for all \(v \in M_n(V) \), \(\|v\|_n < 1 \) if and only if there exist \(u_1, u_2 \in M_n(V)_+ \), \(\|u_1\|_n < 1 \) and \(\|u_2\|_n < 1 \) such that \(\left(\begin{array}{c} u_1 \\ u_2 \end{array} \right) \in M_{2n}(V)_+ \).

3. Computing the Completely Positive Matrix Numerical Index

We will give another proof of Karn’s Theorem [7]. Our proof here is quite distinct and much simpler.

Theorem 3.1. If \(V \) is a matrix regular operator space, then \(n_{cb}^+(V) \geq \frac{1}{2} \).

Proof. It follows from Proposition 2.2 that \(V' \) is a matrix regular operator space, and hence given any \(f \in M_n(V) \) with \(\|f\| < 1 \), there exist \(f_1, f_2 \in Q_n^V \) such that \(\frac{1}{2} \left(f_1, f_2 \right) \in Q_n^V \). Thus for any \(x \in M_n(V) \) we have that \(\|x\| \leq 2 \gamma_n^+(x) \). This means that \(n_{cb}^+(V) \geq \frac{1}{2} \). \(\square \)

Corollary 3.2. Let \(V \) be the predual of a von Neumann algebra, the dual of a unital operator system, the Schatten class space \(S_p \) or the commutative \(l_p \) space for \(1 < p < \infty \). If \(\dim(V) > 1 \), then \(V \) is a quasi-operator system but not an operator system.

Proof. We claim that a matrix pre-ordered operator space \(V \) satisfying

\[\exists \ x_1, x_2 \in V_+ \text{ such that } \|x_1 - x_2\| > \max\{\|x_1\|, \|x_2\|\} \]

is not an operator system. Indeed, suppose that \(V \) is an operator system. Then there exist a Hilbert space \(H \) and a completely isometric complete order monomorphism \(\Phi : V \to \mathcal{L}(H) \). Set \(T_1 = \Phi(x_1) \) and \(T_2 = \Phi(x_2) \). We see that

\[\|T_1 - T_2\| \leq \max\{\|T_1\|, \|T_2\|\} = \max\{\|x_1\|, \|x_2\|\}. \]

This contradicts the fact that

\[\|T_1 - T_2\| = \|x_1 - x_2\| > \max\{\|x_1\|, \|x_2\|\}. \]

Notice that the predual of a von Neumann algebra with dimension greater than one satisfies condition (1) by Jordan Decomposition, and so the dual of a unital operator system by [1] Theorem 4, the Schatten class \(S_p \) space (with \(x_1 = E_{1,1} \) and
$x_2 = E_{2,2}$ and the commutative l_p space (with $x_1 = e_1$ and $x_2 = e_2$) are all not operator systems. On the other hand, since these vector spaces are matrix regular operator spaces, they are quasi-operator systems by Theorem 3.1.

In view of the examples given in the last corollary, we will compute the completely positive numerical index on these classical matrix regular operator spaces.

Theorem 3.3. Let M be a von Neumann algebra with predual M_*, and let W be a unital operator system. If M and W have dimension greater than one, then

$$n_{cb}^+(M_*) = n_{cb}^+(W) = \frac{1}{2}.$$

Proof. Let $V = M_*$ or W'. Then there exist $x_1, x_2 \in V_+$ such that

$$\|x_1\| = \|x_2\| = \frac{1}{2}\|x_1 - x_2\|.$$

In fact, if $V = M_*$, we can find $f, g \in M_+^*$ such that $f(p) = 1$ and $g(I - p) = 1$, where $p \in M$ is a non-trivial projection (i.e., $p \neq 0, I$). Now $f_1, f_2 \in M_+^*$ are defined by setting:

$$f_1(x) := f(pxp), \ f_2(x) := g((I - p)x(I - p)) \quad \text{for any} \ x \in M.$$

By [8, Theorem 3.3.3],

$$\|f_1\| = \|f_2\| = f_1(I) = f_2(I) = 1,$$

and so

$$\|f_1 - f_2\| \leq \|f_1\| + \|f_2\| = 2.$$

Moreover, $u := 2p - I$ is a selfadjoint unitary in M and

$$\langle f_1 - f_2, u \rangle = f_1(p) + f_2(I - p) = 2.$$

On the other hand, it is assumed that $V = W'$. We can pick a non-zero linear functional $f \in W'$ with $f(e) = 0$. Using a similar proof of [1, Theorem 4], we can find a positive linear functional F on $W \times W$ such that

$$F(e, e) = \|f\|, \ F(e, -e) = f(e) = 0 \quad \text{and} \quad f(x) = F(x, 0) - F(0, x).$$

Let $f_1(x) := F(x, 0)$ and $f_2(x) := F(0, x)$. Then f_1 and f_2 are positive linear functionals on W such that $f = f_1 - f_2$. Finally, it is evident that

$$\|f_1\| + \|f_2\| = f_1(e) + f_2(e) = F(e, e) = \|f\|$$

and that

$$\|f_1\| - \|f_2\| = f_1(e) - f_2(e) = F(e, -e) = f(e) = 0.$$

Thus $\|f_1\| = \|f_2\| = \frac{1}{2}\|f\|$.

Next, we will prove that $n_{cb}^+(V) \leq \frac{1}{2}$. Set $x = x_1 - x_2$ and $x_1, x_2 \in V_+$ satisfying

$$\|x_1\| = \|x_2\| = \frac{1}{2}\|x\|.$$

Then for each $n \in \mathbb{N}$ and $\varphi \in Q_n^V$,

$$\|\varphi(x)\| = \|\varphi(x_1) - \varphi(x_2)\| \leq \max\{\|\varphi(x_1)\|, \|\varphi(x_2)\|\} \leq \frac{1}{2}\|x\|.$$

It follows that $\gamma_+^+(x) \leq \frac{1}{2}\|x\|$, and hence $n_{cb}^+(V) \leq \frac{1}{2}$. Since V is a matrix regular operator space, Theorem 3.1 implies that $n_{cb}(V) = \frac{1}{2}$. \hfill \Box
For computing the matrix numerical index on the Schatten class spaces $S_p(H)$ and the commutative L_p spaces, we need to introduce some more results. Let V be a matrix pre-ordered operator space. For each $x \in M_n(V)$, the modified numerical radius is defined by

$$\nu_n(x) := \sup \left\{ |f\left(\begin{array}{cc} 0 & x \\ x^* & 0 \end{array} \right)| : f \in Q_1^{M_{kn}(V)} \right\}.$$

Lemma 3.4. Let V be a matrix pre-ordered operator space. Then

$$n_{cb}^+(V) = \inf \{ \nu_n(x) : x \in M_n(V), \|x\|_n = 1, n \in \mathbb{N} \} .$$

Proof. Let $n \in \mathbb{N}$, $x \in M_n(V)$. By [10] Lemma 2.4 (b) for each $f \in Q_1^{M_{kn}(V)}$, there exist $k \leq 2n$, $\varphi \in Q_k^V$ as well as a unit vector $\eta \in \mathbb{C}^{kn}$ satisfying

$$f(x) = \langle \varphi_{2n}(x)\eta, \eta \rangle \text{ for each } v \in M_{2n}(V).$$

Then we obtain $\nu_n(x) \leq \gamma_n(x)$. Conversely, for each $\varphi \in Q_{m^n}$, there exists a unit vector $\xi \in \mathbb{C}^{m^n}$ such that

$$\|\varphi_n(x)\| = |\langle \varphi_{2n}(x)\xi, \xi \rangle|.$$

Now, consider the functional $f \in Q_1^{M_{kn}(V)}$ given by

$$f(v) := \langle \varphi_{2n}(v)\xi, \xi \rangle \text{ for any } v \in M_{2n}(V).$$

It is clear that

$$f\left(\begin{array}{cc} 0 & x \\ x^* & 0 \end{array} \right) = \langle \varphi_{2n}(x)\xi, \xi \rangle,$$

and thus $\nu_n(x) \geq \gamma_n(x)$. We have proved that $\nu_n(x) = \gamma_n(x)$ for all $n \in \mathbb{N}$, $x \in M_n(V)$. By the definition of $n_{cb}^+(V)$, we conclude that

$$n_{cb}^+(V) = \inf \{ \nu_n(x) : x \in M_n(V), \|x\|_n = 1, n \in \mathbb{N} \} .$$

If M is a semi-finite von Neumann algebra, then there exists a normal faithful semi-finite trace τ on M. In this case, the non-commutative L_p-space $L_p(M)$ is defined to be the norm closure

$$L_p(M, \tau) := cl\{ x \in M, \tau(|x|^p) < \infty \} \|\cdot\|_p,$$

with the norm given by

$$\|x\|_p := (\tau((x^*x)^{\frac{p}{2}}))^{\frac{2}{p}}.$$

The matrix order is given by the positive cones $L_p(M_n(M))^+$, and the operator space structure is given by the complex interpolation

$$M_n(L_p(M)) := \left(M_n(M), M_n(M_n^{op}) \right)_\frac{1}{2} .$$

It follows from Lemma [5,3] and [3] Theorem 2.6 that $n_{cb}^+(L_p(M)) \geq 2^{-\frac{1}{p}}$.

Theorem 3.5. Let H be Hilbert space and M be a finite von Neumann algebra. If H and M have dimension greater than one, then for $1 \leq p < \infty$,

$$n_{cb}^+(S_p(H)) = n_{cb}^+(L_p(M)) = 2^{-\frac{1}{p}}.$$

In particular, if (Ω, Σ, μ) is a σ-finite measure space such that $\dim(L_\infty(\mu)) > 1$, then $n_{cb}^+(L_p(\mu)) = 2^{-\frac{1}{p}}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let N be $\mathcal{L}(H)$ or M. Then N has two non-zero orthogonal projections $P, Q \in L_p(N)$. Putting $x = P/\|P\|_p - Q/\|Q\|_p$, we get $\|x\|_p^p = 2$ and

$$\|\varphi(x)\| \leq \max\{\varphi\left(\frac{P}{\|P\|_p}\right), \varphi\left(\frac{Q}{\|Q\|_p}\right)\} \leq 1$$

for all $n \in \mathbb{N}$, $\varphi \in Q^{L_p}_{n}(N)$. It follows that $\gamma_1^+(x) \leq 1$ and thus

$$n_{cb}^+(L_p(N)) \leq \frac{\gamma_1^+(x)}{\|x\|_p} \leq 2^{-\frac{1}{p}}.$$

Since $N = \mathcal{L}(H)$ or M is a semi-finite von Neumann algebra, we have

$$n_{cb}^+(L_p(N)) \geq 2^{-\frac{1}{p}}.$$

It is known that an abelian von Neumann algebra is a finite von Neumann algebra. This completes the proof. □

Acknowledgements

The author cordially thanks Professor Chi-Keung Ng for his valuable comments and suggestions on an earlier version of this work. Thanks are also due to Z. J. Ruan for his hospitality and helpful discussions.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
References

Department of Mathematics, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
E-mail address: huangxujian86@gmail.com