Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Poincaré's problem for quasi-homogeneous foliations


Authors: Maurício Corrêa Jr. and Márcio G. Soares
Journal: Proc. Amer. Math. Soc. 140 (2012), 3145-3150
MSC (2010): Primary 32S65; Secondary 14M25
DOI: https://doi.org/10.1090/S0002-9939-2012-11193-1
Published electronically: January 10, 2012
MathSciNet review: 2917087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the question of bounding the degree of curves which are invariant by a holomorphic foliation of a given degree on a well-formed weighted projective plane.


References [Enhancements On Off] (What's this?)

  • [1] D. Cerveau and A. Lins Neto, Holomorphic foliations in $ \mathbb{P}_{\mathbb{C}}^2$ having an invariant algebraic curve, Ann. Inst. Fourier 41 (1991), 883-903. MR 1150571 (93b:32050)
  • [2] M. Brunella and L. G. Mendes, Bounding the degree of solutions to Pfaff equations, Publ. Mat. 44 (2000), no. 2, 593-604. MR 1800822 (2002b:32048)
  • [3] M. Brunella, Birational Geometry of Foliations, First Latin American Congress of Mathematicians, IMPA (2000). MR 1948251 (2004g:14018)
  • [4] M. Brunella, Foliations on complex projective surfaces, Dynamical Systems, Part II, pp. 49-77, Scuola Norm. Sup. Pisa, 2003. MR 2071237 (2005g:32045)
  • [5] M.M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140 (1994), 289-294. MR 1298714 (95k:32031)
  • [6] E. Esteves and S. L. Kleiman, Bounding solutions of Pfaff equations. Special issue in honor of Steven L. Kleiman. Comm. Algebra 31 (2003), no. 8, 3771-3793. MR 2007384 (2004m:32061)
  • [7] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press (1998). MR 1658959 (2000b:14018)
  • [8] A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Scient. École Norm. Sup. $ 4^e$ série, t. 35 (2002), 231-266. MR 1914932 (2003j:34009)
  • [9] E. Mann, Cohomologie quantique orbifold des espaces projectifs à poids, J. Algebraic Geom. 17 (2008), 137-166. MR 2357682 (2008k:14106)
  • [10] H. Poincaré, Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 5 (1891), 161-191.
  • [11] J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217-226. MR 1913040 (2003e:32056)
  • [12] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9, n. 4 (1957), 464-492. MR 0095520 (20:2022)
  • [13] M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Inventiones Mathematicae 128 (1997), 495-500. MR 1452431 (99a:32043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32S65, 14M25

Retrieve articles in all journals with MSC (2010): 32S65, 14M25


Additional Information

Maurício Corrêa Jr.
Affiliation: Departamento de Matemática, Universidade Federal de Viçosa, Av. P. H. Rolfs, 36571-000 Viçosa, Brasil
Email: mauricio.correa@ufv.br

Márcio G. Soares
Affiliation: Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, Brasil
Email: msoares@mat.ufmg.br

DOI: https://doi.org/10.1090/S0002-9939-2012-11193-1
Keywords: Holomorphic foliations, weighted projective spaces
Received by editor(s): September 24, 2009
Received by editor(s) in revised form: November 24, 2010, and March 22, 2011
Published electronically: January 10, 2012
Additional Notes: The authors’ work was partially supported by CNPq (Brasil)
Communicated by: Ted Chinburg
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society