Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynomials with AGL-monodromy


Author: Florian Möller
Journal: Proc. Amer. Math. Soc. 140 (2012), 2967-2980
MSC (2010): Primary 12F05, 12F10
DOI: https://doi.org/10.1090/S0002-9939-2012-11199-2
Published electronically: January 12, 2012
MathSciNet review: 2917070
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be a prime and $ r,e$ positive integers. In this paper we prove that the full affine group $ \mathrm {AGL}(r,p^e)$ of dimension $ r$ over the field with $ p^e$ elements can be realized as the geometric monodromy group of a polynomial in characteristic $ p$. We also determine the arithmetic monodromy group of this polynomial and the ramification structure it induces.


References [Enhancements On Off] (What's this?)

  • 1. S. S. Abhyankar, Fundamental group of the affine line in positive characteristic, in Geometry and analysis, Oxford Univ. Press, Oxford, 1995, pp. 1-26. MR 1351500 (97b:14034)
  • 2. S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Bull. AMS, 27, No. 1 (1992), pp. 68-133. MR 1118002 (94a:12004)
  • 3. S. S. Abhyankar, Mathieu group coverings and linear group coverings, in Recent developments in the inverse Galois problem, Contemp. Math., 186, Amer. Math. Soc., 1995, pp. 17-23. MR 1352279 (97e:14038)
  • 4. S. S. Abhyankar, Nice equations for nice groups, Israel J. Math., 88 (1994), pp. 1-23. MR 1303488 (96f:12003)
  • 5. S. S. Abhyankar, Resolution of singularities and modular Galois theory, Bull. AMS, 38, No. 2 (2001), pp. 131-169. MR 1816069 (2002a:14013)
  • 6. P. J. Cameron, Finite permutation groups and finite simple groups, Bull. Lond. Math. Soc., 13 (1981), pp. 1-22. MR 599634 (83m:20008)
  • 7. P. J. Cameron, W. M. Kantor, $ 2$-transitive and antiflag transitive collineation groups of finite projective spaces, J. Algebra, 60 (1979), pp. 384-422. MR 549937 (81c:20032)
  • 8. P. J. Cameron, W. M. Kantor, Antiflag transitive collineation groups revisited, http://www.maths.qmul.ac.uk/$ \sim $pjc/odds/antiflag.pdf, unpublished and incomplete draft, February 2002.
  • 9. J. Conway, J. McKay, A. Trojan, Galois groups over function fields of positive characteristic, Proc. Amer. Math. Soc., 132, No. 8 (2010), pp. 1205-1212. MR 2578514
  • 10. M. R. Darafsheh, Order of elements in the groups related to the general linear group, Finite Fields Appl., 11, No. 4 (2005), pp. 738-747. MR 2181417 (2006g:20085)
  • 11. L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., 12 (1911), pp. 75-98. MR 1500882
  • 12. L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. of Math., 11 (1896), pp. 65-120, 161-183. MR 1502214; MR 1502221
  • 13. N. Elkies, Linearized algebra and finite groups of Lie type. I: Linear and symplectic groups, in Applications of curves over finite fields, AMS Contemp. Math., 245, 1999, pp. 77-107. MR 1732230 (2001a:20082)
  • 14. M. D. Fried, R. M. Guralnick, J. Saxl, Schur covers and Carlitz's conjecture, Israel J. Math., 82 (1993), pp. 157-225. MR 1239049 (94j:12007)
  • 15. R. M. Guralnick, P. Müller, Exceptional polynomials of affine type, J. Algebra, 194, No. 2 (1997), pp. 429-454. MR 1467161 (98i:12006)
  • 16. R. M. Guralnick, J. Rosenberg, M. E. Zieve, A new family of exceptional polynomials in characteristic two, Ann. of Math. (2), 172, No. 2 (2010), pp. 1361-1390. MR 2680493
  • 17. R. M. Guralnick, J. Saxl, Monodromy groups of polynomials, in Groups of Lie type and their geometries, Cambridge Univ. Press, Cambridge, 1995, pp. 125-150. MR 1320519 (96b:20003)
  • 18. R. M. Guralnick, M. E. Zieve, Polynomials with $ \mathrm {PSL}(2)$ monodromy, Ann. of Math. (2), 172, No. 2 (2010), pp. 1315-1359. MR 2680492
  • 19. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967. MR 0224703 (37:302)
  • 20. S. Lang, Algebra, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
  • 21. R. Lidl, G. L. Mullen, G. Turnwald, Dickson polynomials, Longman, Harlow, 1993. MR 1237403 (94i:11097)
  • 22. P. M. Neumann, Some primitive permutation groups, Proc. Lond. Math. Soc., III. Ser., 50 (1985), pp. 265-281. MR 772713 (86d:20005)
  • 23. M. Roitman, On Zsigmondy primes, Proc. AMS, 125, No. 7 (1997), pp. 1913-1919. MR 1402885 (97i:11005)
  • 24. H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, Berlin-Heidelberg, 2009. MR 2464941 (2010d:14034)
  • 25. B. L. van der Waerden, Die Zerlegungs-und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), pp. 731-733. MR 1513024

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 12F05, 12F10

Retrieve articles in all journals with MSC (2010): 12F05, 12F10


Additional Information

Florian Möller
Affiliation: Institut für Mathematik, Universität Würzburg, Hubland Nord, 97074 Würzburg, Germany
Email: fmoeller@mathematik.uni-wuerzburg.de

DOI: https://doi.org/10.1090/S0002-9939-2012-11199-2
Received by editor(s): August 11, 2009
Received by editor(s) in revised form: December 8, 2010, and March 23, 2011
Published electronically: January 12, 2012
Communicated by: Ted Chinburg
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society