Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ q$-Conjugacy classes in loop groups


Author: Dongwen Liu
Journal: Proc. Amer. Math. Soc. 140 (2012), 3297-3311
MSC (2010): Primary 22E67
DOI: https://doi.org/10.1090/S0002-9939-2012-11213-4
Published electronically: January 31, 2012
MathSciNet review: 2917102
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper discusses the twisted conjugacy classes in loop groups. We restrict to classical groups and give some explicit classifications.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7, 1957, 414-452. MR 0131423 (24:A1274)
  • 2. V. Baranovsky, V. Ginzburg, Conjugacy classes in loop groups and $ G$-bundles on elliptic curves, Internat. Math. Res. Notices, 1996, no. 15, 733-751. MR 1413870 (97j:20044)
  • 3. Collected mathematical papers of George David Birkhoff, Volume 1. Dover Publications, 1968. MR 0235971 (38:4271a)
  • 4. D. H. Collingwood, W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993. MR 1251060 (94j:17001)
  • 5. J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique $ p>0$, Math. Ann. 134 (1957), 114-133. MR 0098146 (20:4608)
  • 6. L. Di Vizio, Arithmetic theory of $ q$-difference equations, Invent. Math. 150 (2002), no. 3, 517-578. MR 1946552 (2005a:12013)
  • 7. R. Friedman, J. W. Morgan, Holomorphic principal bundles over elliptic curves, arXiv: math/9811130.
  • 8. G. Harder, M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215-248. MR 0364254 (51:509)
  • 9. N. Katz, A simple algorithm for cyclic vectors, Amer. J. Math. 109 (1987), no. 1, 65-70. MR 878198 (88b:13001)
  • 10. Y. Manin, The theory of formal groups over fields of finite characteristic, Russ. Math. Surv. 18, no. 6 (1963), 1-84. MR 0157972 (28:1200)
  • 11. M. van der Put, M. Reversat, Galois theory of $ q$-difference equations, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 3, 665-718. MR 2379057 (2009d:39033)
  • 12. J. Sauloy, Systèms aux $ q$-différences singuliers réguliers: classification, matrice de connexion et monodromie, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 4, 1021-1071. MR 1799737 (2001m:39043)
  • 13. J. Sauloy, La filtration canonique par les pentes d'un module aux $ q$-différences et le gradué associé, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 1, 181-210. MR 2069126 (2006d:39031)
  • 14. J.-P. Serre, Local fields, Graduate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979. MR 554237 (82e:12016)
  • 15. J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206. MR 0419359 (54:7380)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 22E67

Retrieve articles in all journals with MSC (2010): 22E67


Additional Information

Dongwen Liu
Affiliation: Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Address at time of publication: School of Mathematical Science, Xiamen University, Xiamen, Fujian, People’s Republic of China
Email: math.dwliu@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2012-11213-4
Keywords: Loop groups, conjugacy classes
Received by editor(s): December 2, 2010
Received by editor(s) in revised form: March 30, 2011
Published electronically: January 31, 2012
Communicated by: Lev Borisov
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society