Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Localized energy estimates for wave equations on high-dimensional Schwarzschild space-times


Authors: Parul Laul and Jason Metcalfe
Journal: Proc. Amer. Math. Soc. 140 (2012), 3247-3262
MSC (2010): Primary 35L05
DOI: https://doi.org/10.1090/S0002-9939-2012-11239-0
Published electronically: January 31, 2012
MathSciNet review: 2917097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The localized energy estimate for the wave equation is known to be a fairly robust measure of dispersion. Recent analogs on the $ (1+3)$-dimensional Schwarzschild space-time have played a key role in a number of subsequent results, including a proof of Price's law. In this article, we explore similar localized energy estimates for wave equations on $ (1+n)$-dimensional hyperspherical Schwarzschild space-times.


References [Enhancements On Off] (What's this?)

  • 1. S. Alinhac, On the Morawetz-Keel-Smith-Sogge inequality for the wave equation on a curved background. Publ. Res. Inst. Math. Sci. 42 (2006), 705-720. MR 2266993 (2008c:35163)
  • 2. S. Alinhac, Energy multipliers for perturbations of the Schwarzschild metric. Comm. Math. Phys. 288 (2009), 199-224. MR 2491622 (2010b:58038)
  • 3. L. Andersson and P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, preprint (arXiv:0908.2265)
  • 4. P. Blue, Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Diff. Equ. 5 (2008), 807-856. MR 2475482 (2010d:35371)
  • 5. P. Blue and A. Soffer, Semilinear wave equations on the Schwarzschild manifold. I: Local decay estimates. Adv. Differential Equations 8 (2003), 595-614. MR 1972492 (2004k:58046)
  • 6. P. Blue and A. Soffer, The wave equation on the Schwarzschild metric. II: Local decay for the spin-$ 2$ Regge-Wheeler equation. J. Math. Phys. 46 (2005), 9 pp. MR 2113761 (2005i:58036)
  • 7. P. Blue and A. Soffer, Errata for ``Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds'', ``Semilinear wave equations on the Schwarzschild manifold. I: Local decay estimates'', and ``The wave equation on the Schwarzschild metric. II: Local decay for the spin 2 Regge Wheeler equation'', preprint (arXiv:gr-qc/0608073)
  • 8. P. Blue and A. Soffer, Phase space analysis on some black hole manifolds. J. Funct. Anal. 256 (2009), 1-90. MR 2475417 (2010i:83072)
  • 9. P. Blue and A. Soffer, Improved decay rates with small regularity loss for the wave equation about a Schwarzschild black hole, preprint (arXiv:math/0612168)
  • 10. P. Blue and A. Soffer, A space-time integral estimate for a large data semi-linear wave equation on the Schwarzschild manifold. Lett. Math. Phys. 81 (2007), 227-238. MR 2355489 (2009b:58059)
  • 11. P. Blue and J. Sterbenz, Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Comm. Math. Phys. 268 (2006), 481-504. MR 2259204 (2007i:58037)
  • 12. J.-F. Bony and D. Häfner, The semilinear wave equation on asymptotically Euclidean manifolds. Comm. Partial Differential Equations 35 (2010), no. 1, 23-67. MR 2748617
  • 13. N. Burq, Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge ``Global Strichartz estimates for nontrapping perturbations of the Laplacian''. Comm. Partial Differential Equations 28 (2003), 1675-1683. MR 2001179 (2004g:35146)
  • 14. M. Dafermos and I. Rodnianski, Small-amplitude nonlinear waves on a black hole background. J. Math. Pures Appl. 84 (2005), 1147-1172. MR 2162222 (2006e:58041)
  • 15. M. Dafermos and I. Rodnianski, The red-shift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math. 62 (2009), 859-919. MR 2527808 (2011b:83059)
  • 16. M. Dafermos and I. Rodnianski, A note on energy currents and decay for the wave equation on a Schwarzschild background, preprint (arXiv:0710.017)
  • 17. M. Dafermos and I. Rodnianski, Lectures on black holes and linear waves, preprint (arXiv: 0811.0354)
  • 18. M. Dafermos and I. Rodnianksi, A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. XVIth International Congress on Mathematical Physics, 421-432, World Sci. Publ., Hackensck, NJ, 2010. MR 2730803
  • 19. R. Gregory and R. Laflamme, Hypercylindrical black holes. Phys. Rev. D 37 (1988), 305-308. MR 930979 (89e:83069)
  • 20. K. Hidano and K. Yokoyama, A remark on the almost global existence theorems of Keel, Smith, and Sogge. Funkcial. Ekvac. 48 (2005), 1-34. MR 2154375 (2006c:35190)
  • 21. M. Keel, H. Smith, and C. D. Sogge, Almost global existence for some semilinear wave equations. J. Anal. Math. 87 (2002), 265-279. MR 1945285 (2003m:35167)
  • 22. C. E. Kenig, G. Ponce, and L. Vega, On the Zakharov and Zakharov-Schulman systems.
    J. Funct. Anal. 127 (1995), 204-234. MR 1308623 (96a:35197)
  • 23. J. Luk, Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11 (2010), no. 5, 805-880. MR 2736525
  • 24. J. Marzuola, J. Metcalfe, D. Tataru, and M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds. Comm. Math. Phys. 293 (2010), 37-83. MR 2563798 (2010m:58043)
  • 25. J. Metcalfe, Global existence for semilinear wave equations exterior to nontrapping obstacles. Houston J. Math. 30 (2004), 259-281. MR 2048347 (2005a:35204)
  • 26. J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods. SIAM J. Math. Anal. 38 (2006), 391-420. MR 2217314 (2007f:35201)
  • 27. J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann., to appear.
  • 28. J. Metcalfe and D. Tataru, Decay estimates for variable coefficient wave equations in exterior domains. Advances in Phase Space Analysis of Partial Differential Equations, in Honor of Ferruccio Colombini's 60th Birthday, Progress in Nonlinear Differential Equations and Their Applications, Vol. 78, Birkhäuser Boston, 2009, pp. 201-217. MR 2664612 (2011c:35313)
  • 29. R. C. Myers and M. J. Perry, Black holes in higher dimensional space-times. Ann. Physics 172 (1986), 304-347. MR 868295 (88a:83074)
  • 30. C. Morawetz, Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. Ser. A 306 (1968), 291-296. MR 0234136 (38:2455)
  • 31. V. Schlue, Linear waves on higher dimensional Schwarzschild black holes, preprint.
  • 32. H. F. Smith and C. D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Partial Differential Equations 25 (2000), 2171-2183. MR 1789924 (2001j:35180)
  • 33. C. D. Sogge and C. Wang, Concerning the wave equation on asymptotically Euclidean manifolds, J. Anal. Math. 112 (2010), 1-32. MR 2762995
  • 34. J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation. With an appendix by I. Rodnianski. Int. Math. Res. Not. 2005, 187-231. MR 2128434 (2006i:35212)
  • 35. J. Stewart, Solutions of the wave equation on a Schwarzschild space-time with localised energy. Proc. Roy. Soc. London Ser. A 424 (1989), 239-244. MR 1009115 (90h:83039)
  • 36. W. A. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain. Comm. Pure Appl. Math. 28 (1975), 265-278. MR 0367461 (51:3703)
  • 37. F. R. Tangherlini, Schwarzschild field in $ n$ dimensions and the dimensionality of space problem. Nuovo Cimento 27 (1963), 636-651. MR 0148448 (26:5955)
  • 38. D. Tataru, Local decay of waves on asymptotically flat stationary space-times, preprint (arXiv:0910.5290)
  • 39. D. Tataru and M. Tohaneanu, Local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2011, no. 2, 248-292. MR 2764864

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35L05

Retrieve articles in all journals with MSC (2010): 35L05


Additional Information

Parul Laul
Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250
Address at time of publication: DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
Email: p.laul@dpmms.cam.ac.uk

Jason Metcalfe
Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250

DOI: https://doi.org/10.1090/S0002-9939-2012-11239-0
Received by editor(s): August 30, 2010
Received by editor(s) in revised form: January 13, 2011, and March 30, 2011
Published electronically: January 31, 2012
Additional Notes: The second author was supported in part by the NSF through grant DMS0800678.
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society