Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Linear orthogonality preservers of Hilbert $ C^*$-modules over $ C^*$-algebras with real rank zero


Authors: Chi-Wai Leung, Chi-Keung Ng and Ngai-Ching Wong
Journal: Proc. Amer. Math. Soc. 140 (2012), 3151-3160
MSC (2010): Primary 46L08, 46H40
DOI: https://doi.org/10.1090/S0002-9939-2012-11260-2
Published electronically: January 6, 2012
MathSciNet review: 2917088
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a $ C^*$-algebra with real rank zero. Let $ E$ and $ F$ be Hilbert $ A$-modules with $ E$ being full. Suppose that $ \theta : E\to F$ is a linear map preserving orthogonality, i.e.,

$\displaystyle \langle \theta (x),\theta (y)\rangle \ =\ 0$$\displaystyle \quad \text {whenever}\quad \langle x,y\rangle \ =\ 0. $

We show in this article that if $ \theta $ is an $ A$-module map (not assumed to be bounded), then there exists a central positive multiplier $ u\in M(A)$ such that

$\displaystyle \langle \theta (x), \theta (y)\rangle \ =\ u \langle x, y\rangle \qquad (x,y\in E). $

In the case when $ A$ is a standard $ C^*$-algebra, when $ A$ is a real rank zero properly infinite unital $ C^*$-algebra, or when $ A$ is a $ W^*$-algebra, we also get the same conclusion with the assumption of $ \theta $ being an $ A$-module map weakened to being a local map.

References [Enhancements On Off] (What's this?)

  • 1. J. Alaminos, M. Brešar, M. Černe, J. Extremera, and A. R. Villena, Zero product preserving maps on $ C^1[0,1]$, J. Math. Anal. Appl. 347 (2008), 472-481. MR 2440343 (2009j:47069)
  • 2. J. Araujo, Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity, Adv. Math. 187 (2004), no. 2, 488-520. MR 2078345 (2005c:47040)
  • 3. A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Royal Soc. Edinburgh 136A (2006), 709-716. MR 2250441 (2007e:46006)
  • 4. L. G. Brown, Semicontinuity and multipliers of $ C^*$-algebras, Can. J. Math., vol. XL, no. 4 (1988), 865-988. MR 969204 (90a:46148)
  • 5. L. G. Brown and G. K. Pedersen, $ C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149. MR 1120918 (92m:46086)
  • 6. J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl. 304 (2005), 158-169. MR 2124655 (2005m:46118)
  • 7. M. Frank, A.S. Mishchenko and A.A. Pavlov, Orthogonality-preserving, $ C^*$-conformal and conformal module mappings on Hilbert $ C^*$-modules, J. Funct. Anal. 260 (2011), 327-339. MR 2737403
  • 8. S. Goldstein and A. Paszkiewicz, Linear combinations of projections in von Neumann algebras, Proc. Amer. Math. Soc. 116 (1992), 175-183. MR 1094501 (92k:46101)
  • 9. D. Ilišević and A. Turnšek, Approximately orthogonality preserving mappings on $ C^*$-modules, J. Math. Anal. Appl. 341 (2008), 298-308. MR 2394085 (2009i:46109)
  • 10. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vol. I, Graduate Studies in Math, 15. Amer. Math. Soc., Providence, RI, 1997. MR 1468229 (98f:46001a)
  • 11. R. Kantrowitz and M. M. Neumann, Disjointness preserving and local operators on algebras of differentiable functions, Glasg. Math. J. 43 (2001), 295-309. MR 1838633 (2002d:47048)
  • 12. C.-W. Leung, C.-K. Ng and N.-C. Wong, Automatic continuity and $ C_0(\Omega )$-linearity of linear maps between $ C_0(\Omega )$-modules, J. Aust. Math. Soc. 89 (2010), 245-254.
  • 13. C.-W. Leung, C.-K. Ng and N.-C. Wong, Linear orthogonality preservers of Hilbert bundles, J. Aust. Math. Soc. 89 (2010), 245-254. MR 2769139
  • 14. Bingren Li, Introduction to operator algebras, World Scientific, Singapore, 1992. MR 1194183 (94b:46083)
  • 15. Y.-F. Lin and M. Mathieu, Jordan isomorphism of purely infinite $ C^*$-algebras, Quart. J. Math. 58 (2007), 249-253. MR 2334865 (2008k:46189)
  • 16. R. Narasimhan, Analysis on real and complex manifolds, Advanced Studies in Pure Mathematics 1, North-Holland Publishing Co., Amsterdam, 1968. MR 0251745 (40:4972)
  • 17. C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465. MR 0218922 (36:2006)
  • 18. G. K. Pedersen, $ C^*$-algebras and their automorphism groups, Academic Press, New York, 1979. MR 548006 (81e:46037)
  • 19. J. Peetre, Réctification à l'article ``Une caractérisation abstraite des opérateurs différentiels'', Math. Scand. 8 (1960), 116-120. MR 0124611 (23:A1923)
  • 20. Jürgen Schweizer, Interplay between noncommutative topology and operators on C*-algebras, PhD thesis, Univ. Tuebingen (1996).
  • 21. Jürgen Schweizer, An analogue of Peetre's theorem in non-commutative topology, Q. J. Math. 52 (2001), 499-506. MR 1874495 (2002j:58013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L08, 46H40

Retrieve articles in all journals with MSC (2010): 46L08, 46H40


Additional Information

Chi-Wai Leung
Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
Email: cwleung@math.cuhk.edu.hk

Chi-Keung Ng
Affiliation: Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
Email: ckng@nankai.edu.cn

Ngai-Ching Wong
Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China
Email: wong@math.nsysu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-2012-11260-2
Keywords: Hilbert $C^{*}$-modules, orthogonality preservers, module maps, local maps, real rank zero $C^{*}$-algebras
Received by editor(s): May 25, 2010
Received by editor(s) in revised form: March 22, 2011
Published electronically: January 6, 2012
Additional Notes: The authors are supported by The Chinese University of Hong Kong Direct Grant (2060389), National Natural Science Foundation of China (10771106), and Taiwan NSC grant (NSC96-2115-M-110-004-MY3).
Communicated by: Marius Junge
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society