Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compact operators in TRO's


Author: G. Andreolas
Journal: Proc. Amer. Math. Soc. 140 (2012), 3169-3178
MSC (2010): Primary 47B07; Secondary 47Cxx
DOI: https://doi.org/10.1090/S0002-9939-2012-11356-5
Published electronically: January 13, 2012
MathSciNet review: 2917090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a geometric characterization of the elements of a ternary ring of operators (or simply, TRO) that can be represented as compact operators by a faithful representation of the TRO.


References [Enhancements On Off] (What's this?)

  • 1. M. Anoussis, V. Felouzis and I. G. Todorov, Contractive perturbations in $ C^*$-algebras,
    J. Operator Theory 59 (2008), no. 1, 53-68. MR 2404464 (2009h:46100)
  • 2. M. Anoussis and E. G. Katsoulis, Compact operators and the geometric structure of $ C^*$-algebras, Proc. Amer. Math. Soc. 124 (1996), 2115-2122. MR 1322911 (96i:46068)
  • 3. M. Anoussis and E. G. Katsoulis, Compact operators and the geometric structure of nest algebras, Indiana Univ. Math. J. 46 (1997), 319-335. MR 1444482 (98e:47066a)
  • 4. M. Anoussis and I. Todorov, Compact operators on Hilbert modules, Proc. Amer. Math. Soc. 133 (2005), 257-261. MR 2086218 (2005e:46091)
  • 5. L. Arambašić, Irreducible representations of Hilbert $ C^*$-modules, Math. Proc. R. Ir. Acad. 105A (2005), 11-24. MR 2162903 (2006d:46078)
  • 6. L. J. Bunce and C.-H. Chu, Compact operations, multipliers and Radon-Nikodým property in $ JB^*$-triples, Pacific J. Math. 153 (1992), no. 2, 249-265. MR 1151560 (93c:46125)
  • 7. J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics 96, Springer-Verlag, New York, 1990. MR 1070713 (91e:46001)
  • 8. L. Harris, A generalization of $ C^*$-algebras, Proc. London Math. Soc. 42 (1981), 331-361. MR 0607306 (82e:46089)
  • 9. M. Hestenes, A ternary algebra with applications to matrices and linear transformations, Arch. Rational Mech. Anal. 11 (1962), 138-194. MR 0150166 (27:169)
  • 10. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. II, Academic Press, New York, 1986. MR 1468230 (98f:46001b)
  • 11. E. G. Katsoulis, Geometry of the unit ball and representation theory for operator algebras, Pacific J. Math. 216 (2004), 267-292. MR 2094546 (2006b:47123)
  • 12. R. L. Moore and T. T. Trent, Extreme points of certain operator algebras, Indiana Univ. Math. J. 36 (1987), 645-650. MR 0905616 (89d:47103)
  • 13. G. J. Murphy, $ C^*$-algebras and Operator Theory, Academic Press, Boston, 1990. MR 1074574 (91m:46084)
  • 14. K. Vala, On compact sets of compact operators, Ann. Acad. Sci. Fenn. Ser. A I 351 (1964). MR 0169078 (29:6333)
  • 15. K. Vala, Sur les éléments compacts d'une algèbre normée, Ann. Acad. Sci. Fenn. Ser. A I 407 (1967). MR 0222642 (36:5692)
  • 16. K. Ylinen, A note on the compact elements of $ C^*$-algebras, Proc. Amer. Math. Soc. 35 (1972), 305-306. MR 0296716 (45:5775)
  • 17. K. Ylinen, Dual $ C^*$-algebras, weakly semi-completely continuous elements, and the extreme rays of the positive cone, Ann. Acad. Sci. Fenn. Ser. A I Math. 599 (1975), 9 pp. MR 0385584 (52:6445)
  • 18. H. Zettl, A characterization of ternary rings of operators, Adv. in Math. 48 (1983), no. 2, 117-143. MR 0700979 (84h:46093)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B07, 47Cxx

Retrieve articles in all journals with MSC (2010): 47B07, 47Cxx


Additional Information

G. Andreolas
Affiliation: Department of Mathematics, University of the Aegean, 83200 Karlovassi, Samos, Greece
Email: gandreolas@aegean.gr

DOI: https://doi.org/10.1090/S0002-9939-2012-11356-5
Keywords: Contractive perturbations, compact operators, weakly compact, ternary ring of operators, TRO’s.
Received by editor(s): November 11, 2010
Received by editor(s) in revised form: March 24, 2011
Published electronically: January 13, 2012
Communicated by: Marius Junge
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society