Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Arithmetic of division fields


Authors: Armand Brumer and Kenneth Kramer
Journal: Proc. Amer. Math. Soc. 140 (2012), 2981-2995
MSC (2010): Primary 11F80; Secondary 11S15, 11G10, 11Y40
DOI: https://doi.org/10.1090/S0002-9939-2012-11500-X
Published electronically: January 12, 2012
MathSciNet review: 2917071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the arithmetic of division fields of semistable abelian varieties $ A_{/\mathbb{Q}}.$ The Galois group of $ \mathbb{Q}(A[2])/\mathbb{Q}$ is analyzed when the conductor of $ A$ is odd and squarefree. The irreducible semistable mod 2 representations of small conductor are determined under GRH. These results are used in our paper Paramodular abelian varieties of odd conductor.


References [Enhancements On Off] (What's this?)

  • 1. M. Aschbacher, Finite Group Theory, Cambridge University Press, 1986. MR 895134 (89b:20001)
  • 2. W. Bosma, J. Cannon and C. Playoust. The Magma algebra system. I. The user language. J. Symb. Comp., 24 (1997) 235-265. MR 1484478
  • 3. A. Brumer and K. Kramer, Semistable Abelian varieties with small division fields. Galois Theory and Modular Forms, Hashimoto, Miyake, Nakamura, eds., Kluwer, 2003, 13-38. MR 2059756 (2005m:11106)
  • 4. A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, math arXiv:1004.4699.
  • 5. F. Diaz y Diaz, Tables minorant la racine $ n$-ième du discriminant d'un corps de degré $ n$, Ph.D. Thesis, Publ. Math. Orsay, 1980.
  • 6. R.H. Dye, Interrelations of symplectic and orthogonal groups in characteristic two, J. of Algebra, 59 (1979) 202-221. MR 541675 (81c:20028)
  • 7. J.-M. Fontaine, Il n'y a pas de variété abélienne sur $ \mathbb{Z}$, Invent. Math., 81 (1985) 515-538. MR 807070 (87g:11073)
  • 8. B. H. Gross and J. Harris, On some geometric constructions related to theta characteristics. Contributions to automorphic forms, geometry, and number theory, Hida et al., eds., Johns Hopkins, 2004, 279-312. MR 2058611 (2005h:14079)
  • 9. A. Grothendieck, Modèles de Néron et monodromie. Sém. de Géom. 7, Exposé IX, Lecture Notes in Math., 288, Springer-Verlag, 1973.
  • 10. F. Hajir and C. Maire, Extensions of number fields with wild ramification of bounded depth, Inter. Math. Res. Notices, 13 (2002) 667-696. MR 1890847 (2002m:11096)
  • 11. B. Huppert, Endliche Gruppen. I, Springer-Verlag, 1967. MR 0224703 (37:302)
  • 12. J. Jones, Wild ramification bounds and simple group Galois extensions ramified only at 2, Proc. Amer. Math. Soc., 139 (2011) 807-821. MR 2745634
  • 13. J. Jones and D. Roberts, Local fields, J. Symbolic Computation, 41(1) (2006) 80-97. MR 2194887 (2006k:11230)
  • 14. J. Jones and D. Roberts, Galois number fields with small root discriminant, J. Number Theory, 122 (2007) 379-407. MR 2292261 (2008e:11140)
  • 15. W.M. Kantor, Subgroups of classical groups generated by long roots, Trans. Amer. Math. Soc., 248 (1979) 347-379. MR 522265 (80g:20057)
  • 16. G. Kemper and G. Malle, The finite irreducible linear groups with polynomial ring of invariants, Transformation Groups, 2 (1997) 57-89. MR 1439246 (98a:13012)
  • 17. J. McLaughlin, Some subgroups of $ \rm {SL}_n(\mathbb{F}_2)$, Ill. J. Math., 13 (1969) 108-115. MR 0237660 (38:5941)
  • 18. A. Odlyzko, Lower bounds for discriminants of number fields. II, Tôhoku Math. J., 29 (1977) 209-216. MR 0441918 (56:309)
  • 19. A. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: A survey of recent results, Sém. Théorie Nombres Bordeaux, (2)2(1) (1990) 119-141. MR 1061762 (91i:11154)
  • 20. R. Schoof, Abelian varieties over cyclotomic fields with everywhere good reduction, Math. Ann., 325 (2003) 413-448. MR 1968602 (2005b:11076)
  • 21. J.-P. Serre, Local Fields, Graduate Texts in Math., 67, Springer-Verlag, 1979. MR 0554237 (82e:12016)
  • 22. A. E. Zalesskii and V. N. Serezkin, Finite linear groups generated by reflections, Math. USSR Izv., 17 (1981) 477-503. MR 603578 (82i:20060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F80, 11S15, 11G10, 11Y40

Retrieve articles in all journals with MSC (2010): 11F80, 11S15, 11G10, 11Y40


Additional Information

Armand Brumer
Affiliation: Department of Mathematics, Fordham University, Bronx, New York 10458
Email: brumer@fordham.edu

Kenneth Kramer
Affiliation: Department of Mathematics, Queens College and the Graduate Center (CUNY), 65-30 Kissena Boulevard, Flushing, New York 11367
Email: kkramer@gc.cuny.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11500-X
Keywords: Semistable Galois representation, transvection, stem field discriminant, bounded ramification.
Received by editor(s): March 26, 2011
Published electronically: January 12, 2012
Additional Notes: The research of the second author was partially supported by NSF grant DMS 0739346
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society