Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Commutators in groups definable in o-minimal structures


Authors: Elías Baro, Eric Jaligot and Margarita Otero
Journal: Proc. Amer. Math. Soc. 140 (2012), 3629-3643
MSC (2010): Primary 03C64; Secondary 20F12, 20F38, 20A15, 03C60
DOI: https://doi.org/10.1090/S0002-9939-2012-11209-2
Published electronically: February 27, 2012
MathSciNet review: 2929031
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the definability and actually the finiteness of the commutator width of many commutator subgroups in groups definable in o-minimal structures. This applies in particular to derived series and to lower central series of solvable groups. Along the way, we prove some generalities on groups with the descending chain condition on definable subgroups and/or with a definable and additive dimension.


References [Enhancements On Off] (What's this?)

  • 1. Armand Borel, Class functions, conjugacy classes and commutators in semisimple Lie groups, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 1-19. MR 1635671 (99j:22020)
  • 2. Alexandre Borovik and Ali Nesin, Groups of finite Morley rank, Oxford Logic Guides, vol. 26, The Clarendon Press, Oxford University Press, New York, 1994, Oxford Science Publications. MR 1321141 (96c:20004)
  • 3. Annalisa Conversano, On the connections between groups definable in o-minimal structures and real Lie groups: the non-compact case, Ph.D. Thesis, University of Siena, 2009.
  • 4. Adrien Deloro and Eric Jaligot, Groups of finite Morley rank with solvable local subgroups, To appear in Communications in Algebra, 2011.
  • 5. Mário J. Edmundo, Solvable groups definable in o-minimal structures, J. Pure Appl. Algebra 185 (2003), no. 1-3, 103-145. MR 2006422 (2004j:03048)
  • 6. Ehud Hrushovski, Ya'acov Peterzil, and Anand Pillay, On central extensions and definably compact groups in o-minimal structures, J. Algebra 327 (2011), no. 1, 71-106. MR 2746030
  • 7. Otto H. Kegel and Bertram A. F. Wehrfritz, Locally finite groups, North-Holland Mathematical Library, Vol. 3, North-Holland Publishing Co., Amsterdam, 1973. MR 0470081 (57:9848)
  • 8. Martin W. Liebeck, E. A. O'Brien, Aner Shalev, and Pham Huu Tiep, The Ore conjecture, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 939-1008. MR 2654085
  • 9. Angus Macintyre, On $ \omega _{1}$-categorical theories of abelian groups, Fund. Math. 70 (1971), no. 3, 253-270. MR 0289280 (44:6471)
  • 10. Dragomir Ž. Ðoković, On commutators in real semisimple Lie groups, Osaka J. Math. 23 (1986), no. 1, 223-228. MR 836712 (87g:22006)
  • 11. Arkadi L. Onishchik and Èrnest. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110 (91g:22001)
  • 12. Margarita Otero, A survey on groups definable in o-minimal structures, Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 177-206. MR 2436142 (2010b:03042)
  • 13. Ya'acov Peterzil, Anand Pillay, and Sergei Starchenko, Linear groups definable in o-minimal structures, J. Algebra 247 (2002), no. 1, 1-23. MR 1873380 (2002i:03043)
  • 14. Derek J. S. Robinson, A course in the theory of groups, second ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169 (96f:20001)
  • 15. Maxwell Rosenlicht, On a result of Baer, Proc. Amer. Math. Soc. 13 (1962), 99-101. MR 0147553 (26:5068)
  • 16. Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348 (99j:03001)
  • 17. Frank O. Wagner, Stable groups, London Mathematical Society Lecture Note Series, vol. 240, Cambridge University Press, Cambridge, 1997. MR 1473226 (99g:20010)
  • 18. Robert B. Warfield, Jr., Nilpotent groups, Lecture Notes in Mathematics, Vol. 513, Springer-Verlag, Berlin, 1976. MR 0409661 (53:13413)
  • 19. Alex J. Wilkie, o-minimal structures, Astérisque (2009), no. 326, Exp. No. 985, vii, 131-142 (2010), Séminaire Bourbaki, Vol. 2007/2008. MR 2605320

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03C64, 20F12, 20F38, 20A15, 03C60

Retrieve articles in all journals with MSC (2010): 03C64, 20F12, 20F38, 20A15, 03C60


Additional Information

Elías Baro
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Address at time of publication: Universidad Complutense de Madrid, 28040 Madrid, Spain

Eric Jaligot
Affiliation: Institut Fourier, CNRS, Université Grenoble I, 100 rue des maths, BP 74, 38402 St Martin d’Hères cedex, France

Margarita Otero
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

DOI: https://doi.org/10.1090/S0002-9939-2012-11209-2
Keywords: Commutators, o-minimality, semi-algebraic groups, Lie groups.
Received by editor(s): February 23, 2011
Received by editor(s) in revised form: April 9, 2011, and April 16, 2011
Published electronically: February 27, 2012
Additional Notes: The three authors are partially supported by MTM2011-22435. The first and third authors are partially supported by Grupos UCM 910444/GR35/10-A
Communicated by: Julia Knight
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society