Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On some moduli spaces of bundles on $ K3$ surfaces, II


Author: C. G. Madonna
Journal: Proc. Amer. Math. Soc. 140 (2012), 3397-3408
MSC (2010): Primary 14D20, 14J28
DOI: https://doi.org/10.1090/S0002-9939-2012-11251-1
Published electronically: February 23, 2012
MathSciNet review: 2929009
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give several examples of the existence of infinitely many divisorial conditions on the moduli space of polarized $ K3$ surfaces $ (S,H)$ of degree $ H^2=2g-2$, $ g \geq 3$, and Picard number $ \rho (S)=rk N(S)=2$, such that for a general $ K3$ surface $ S$ satisfying these conditions the moduli space of sheaves $ M_S(r,H,s)$ is birationally equivalent to the Hilbert scheme $ S[g-rs]$ of zero-dimensional subschemes of $ S$ of length equal to $ g-rs$. This result generalizes a result of Nikulin when $ g=rs+1$ and an earlier result of the author when $ r=s=2$, $ g \geq 5$.


References [Enhancements On Off] (What's this?)

  • 1. A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18(1983), no. 4, 755-782. MR 730926 (86c:32030)
  • 2. C.G. Madonna, On some moduli spaces of bundles on $ K3$ surfaces, Monatsh. Math. 146(2005), 333-339. MR 2191732 (2006j:14061)
  • 3. C. Madonna and V.V. Nikulin, On a classical correspondence between $ K3$ surfaces, Proc. Steklov Inst. of Math. 241(2003), 120-153. MR 2024049 (2004m:14080)
  • 4. C.G. Madonna and V.V. Nikulin, Explicit correspondences of a $ K3$ surface with itself, Izv. Math. 72(2008), no. 3, 497-508. MR 2432754 (2009e:14061)
  • 5. Sh. Mukai, On the moduli space of bundles on $ K3$ surfaces I, in: Vector bundles on algebraic varieties, Tata Inst. Fund. Res. Studies in Math. 11 (1987), 341-413. MR 893604 (88i:14036)
  • 6. Sh. Mukai, Moduli of vector bundles on $ K3$ surfaces and symplectic manifolds, Sugaku Expositions 1(1988), no. 2, 139-174. MR 922020 (89h:32057)
  • 7. V.V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications, Math USSR-Izv. 14(1980), no. 1, 103-167. MR 525944 (80j:10031)
  • 8. V.V. Nikulin, On correspondences of a $ K3$ surface with itself. I, Proc. Steklov Inst. of Math. 246(2004), 204-226. MR 2101295 (2005j:14055)
  • 9. V.V. Nikulin, On correspondences of a $ K3$ surface with itself. II, Contemporary Mathematics 422, Amer. Math. Soc., Providence, RI, 2007, 121-172. MR 2296436 (2008b:14061)
  • 10. V.V. Nikulin, Self-correspondences of a $ K3$ surface via moduli of sheaves, in: Y. Tschinkel and Y. Zarhin (eds.), Algebra, Arithmetic, and Geometry. Volume II: In Honor of Yu. I. Manin, 2009, Birkhäuser Boston, 439-464. MR 2641198 (2011g:14032)
  • 11. A.N. Tyurin, Cycles, curves and vector bundles on algebraic surfaces, Duke Math. J. 54(1987), no. 1, 1-26. MR 885772 (88m:14004)
  • 12. K.Yoshioka, Some examples of Mukai's reflections on $ K3$ surfaces, J. Reine Angew. Math. 515(1999), 97-123. MR 1717621 (2000h:14028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14D20, 14J28

Retrieve articles in all journals with MSC (2010): 14D20, 14J28


Additional Information

C. G. Madonna
Affiliation: Faculty of Teacher Training and Education, Autonoma University of Madrid, Campus de Cantoblanco, C/Fco. Tomas y Valiente 3, Madrid E-28049, Spain
Email: carlo.madonna@uam.es

DOI: https://doi.org/10.1090/S0002-9939-2012-11251-1
Received by editor(s): August 17, 2010
Received by editor(s) in revised form: April 12, 2011
Published electronically: February 23, 2012
Additional Notes: The author was supported by EPSRC grant EP/D061997/1. The author is a member of project MTM2007-67623, founded by the Spanish MEC
Communicated by: Lev Borisov
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society