Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

On some moduli spaces of bundles on $ K3$ surfaces, II


Author: C. G. Madonna
Journal: Proc. Amer. Math. Soc. 140 (2012), 3397-3408
MSC (2010): Primary 14D20, 14J28
Published electronically: February 23, 2012
MathSciNet review: 2929009
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give several examples of the existence of infinitely many divisorial conditions on the moduli space of polarized $ K3$ surfaces $ (S,H)$ of degree $ H^2=2g-2$, $ g \geq 3$, and Picard number $ \rho (S)=rk N(S)=2$, such that for a general $ K3$ surface $ S$ satisfying these conditions the moduli space of sheaves $ M_S(r,H,s)$ is birationally equivalent to the Hilbert scheme $ S[g-rs]$ of zero-dimensional subschemes of $ S$ of length equal to $ g-rs$. This result generalizes a result of Nikulin when $ g=rs+1$ and an earlier result of the author when $ r=s=2$, $ g \geq 5$.


References [Enhancements On Off] (What's this?)

  • 1. Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
  • 2. C. G. Madonna, On some moduli spaces of bundles on 𝐾3 surfaces, Monatsh. Math. 146 (2005), no. 4, 333–339. MR 2191732, 10.1007/s00605-005-0328-x
  • 3. K. Madonna and V. V. Nikulin, On the classical correspondence between 𝐾3 surfaces, Tr. Mat. Inst. Steklova 241 (2003), no. Teor. Chisel, Algebra i Algebr. Geom., 132–168 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2 (241) (2003), 120–153. MR 2024049
  • 4. K. G. Madonna and V. V. Nikulin, Explicit correspondences of a 𝐾3 surface with itself, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), no. 3, 89–102 (Russian, with Russian summary); English transl., Izv. Math. 72 (2008), no. 3, 497–508. MR 2432754, 10.1070/IM2008v072n03ABEH002409
  • 5. S. Mukai, On the moduli space of bundles on 𝐾3 surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR 893604
  • 6. Shigeru Mukai, Moduli of vector bundles on 𝐾3 surfaces and symplectic manifolds, Sūgaku 39 (1987), no. 3, 216–235 (Japanese). Sugaku Expositions 1 (1988), no. 2, 139–174. MR 922020
  • 7. V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
  • 8. V. V. Nikulin, On the correspondences of a K3 surface with itself. I, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 217–239 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3 (246) (2004), 204–226. MR 2101295
  • 9. Viacheslav V. Nikulin, On correspondences of a 𝐾3 surface with itself. II, Algebraic geometry, Contemp. Math., vol. 422, Amer. Math. Soc., Providence, RI, 2007, pp. 121–172. MR 2296436, 10.1090/conm/422/08059
  • 10. Viacheslav V. Nikulin, Self-correspondences of 𝐾3 surfaces via moduli of sheaves, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 439–464. MR 2641198
  • 11. A. N. Tyurin, Cycles, curves and vector bundles on an algebraic surface, Duke Math. J. 54 (1987), no. 1, 1–26. MR 885772, 10.1215/S0012-7094-87-05402-0
  • 12. Kōta Yoshioka, Some examples of Mukai’s reflections on 𝐾3 surfaces, J. Reine Angew. Math. 515 (1999), 97–123. MR 1717621, 10.1515/crll.1999.080

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14D20, 14J28

Retrieve articles in all journals with MSC (2010): 14D20, 14J28


Additional Information

C. G. Madonna
Affiliation: Faculty of Teacher Training and Education, Autonoma University of Madrid, Campus de Cantoblanco, C/Fco. Tomas y Valiente 3, Madrid E-28049, Spain
Email: carlo.madonna@uam.es

DOI: https://doi.org/10.1090/S0002-9939-2012-11251-1
Received by editor(s): August 17, 2010
Received by editor(s) in revised form: April 12, 2011
Published electronically: February 23, 2012
Additional Notes: The author was supported by EPSRC grant EP/D061997/1. The author is a member of project MTM2007-67623, founded by the Spanish MEC
Communicated by: Lev Borisov
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.