3-MANIFOLDS
WITH POSITIVE FLAT CONFORMAL STRUCTURE

REIKO AIYAMA AND KAZUO AKUTAGAWA

(Communicated by Lei Ni)

ABSTRACT. In this paper, we consider a closed 3-manifold \(M \) with flat conformal structure \(C \). We will prove that if the Yamabe constant of \((M, C)\) is positive, then \((M, C)\) is Kleinian.

1. Introduction and Main Theorem

In 1988, Schoen and Yau [19] gave a final resolution for the Yamabe Problem (cf. [3, 15, 18]). In [19, Proposition 3.3], they also proved that any closed \(n \)-manifold with flat conformal structure of positive Yamabe constant is Kleinian, provided that \(n \geq 4 \). Moreover, under the assumption that an extended Positive Mass Theorem holds (but a proof has not yet appeared), they showed that the above assertion still holds even when \(n = 3 \) (see [19, Proposition 4.4’] and the paragraph just before it).

On the other hand, there are enormous examples of closed 3-manifolds with flat conformal structures which are not Kleinian (see [8, Remark 7.4]).

The purpose of this brief note is to prove the above assertion for the remaining case \(n = 3 \).

Theorem 1.1. Let \(M \) be a closed 3-manifold with flat conformal structure \(C \). If its Yamabe constant is positive, then \((M, C)\) is Kleinian.

This assertion can be obtained by an argument in the proof of [1, the second assertion of Theorem 1.4], which is a combination of a result [19, Proposition 4.2], a positive mass theorem [1 the first assertion of Theorem 1.4] (different from the one Schoen and Yau mentioned in [19]) and a classification of 3-manifolds with positive scalar curvature [7, 10, 11]. Here, we will explicitly give a proof of it (see also Remark 2.2 below).

The remaining sections are organized as follows. Section 2 contains some necessary definitions and preliminary geometric results. Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminaries

Let \(M \) be a closed 3-manifold, that is, a compact 3-manifold without boundary. To simplify the presentation and the argument, we always assume that \(\dim M = 3 \).
which is of constant scalar curvature case of \[1\], the first assertion of Theorem 1.4: hold (see \[1\], Remark 1.5-(2) for instance). Mass theorem for asymptotically flat 3-manifolds with singularities does not always hold (see \[1\], Remark 1.5-(2) for instance).

Assume that \((M, g) \) is an asymptotically flat 3-manifold \((M, g) \) can be defined in the usual way (cf. \[4\]). Note also that the positive Yamabe, Trudinger, Aubin and Schoen asserts that each conformal class \(g \in C \) of \(C \) has a minimizer \(\tilde{g} \) of \(E[\cdot] \), called a Yamabe metric (or a solution of the Yamabe Problem), which is of constant scalar curvature

\[R_{\tilde{g}} = Y(M, C) \cdot \text{Vol}_g(M)^{-2/3}. \]

Let \(M_{\infty} \) be an infinite covering of \(M \). We shall say that the fundamental group \(\pi_1(M) \) of \(M \) has a descending chain of finite index subgroups tending to \(\pi_1(M_{\infty}) \) if it satisfies the following: There exists a family of subgroups \(\{\Gamma_i\}_{i \geq 1} \) of \(\pi_1(M) \) such that

(i) each \(\Gamma_i \) is of finite index in \(\pi_1(M) \) with \(\Gamma_i \supset \pi_1(M_{\infty}) \),
(ii) \(\pi_1(M) = \Gamma_1 \supset \Gamma_2 \supset \cdots \supset \Gamma_i \supset \Gamma_{i+1} \supset \cdots \),
(iii) \(\bigcap_{i=1}^{\infty} \Gamma_i = \pi_1(M_{\infty}) \).

Assume that \(Y(M, C) > 0 \). Take a positive scalar curvature metric \(g \in C \) and any point \(p \in M \). Then, there exists the normalized Green’s function \(G_p \) for \(L_g \) with a pole at \(p \), that is,

\[L_g G_p = c_0 \cdot \delta_p \quad \text{on} \quad M \quad \text{and} \quad \lim_{q \to p} \text{dist}(q, p) G_p(q) = 1. \]

Here, \(L_g := -8\Delta_g + R_g, c_0 > 0 \) and \(\delta_p \) stand respectively for the conformal Laplacian, a specific universal positive constant and the Dirac \(\delta \)-function at \(p \). Assume also that the covering \(P_{\infty} : M_{\infty} \to M \) is normal. Let \(g_{\infty} \) denote the lift of \(g \) to \(M_{\infty} \), and \(p_{\infty} \) a point in \(M_{\infty} \) with \(P_{\infty}(p_{\infty}) = p \). Then, there exists uniquely also a normalized minimal positive Green’s function \(G_{\infty} \) on \(M_{\infty} \) for \(L_{g_{\infty}} := -8\Delta_{g_{\infty}} + R_{g_{\infty}} \) with pole at \(p_{\infty} \) (cf. \[13\]), which satisfies the following:

\[(P_{\infty})^* G_p = \sum_{\gamma \in \mathcal{G}} G_{\infty} \circ \gamma \quad \text{on} \quad M_{\infty}. \]

Here, \(\mathcal{G} \) stands for the group of deck transformations for the normal covering \(M_{\infty} \to M \). Set

\[g_{\infty,AF} := G_{\infty}^4 \cdot g_{\infty} \quad \text{on} \quad M_{\infty}^* := M_{\infty} - \{p_{\infty}\}. \]

Then, \(g_{\infty,AF} \) defines a scalar-flat, asymptotically flat metric on \(M_{\infty}^* \) (cf. \[15\]). Note that this asymptotically flat 3-manifold \((M_{\infty}^*, g_{\infty,AF})\) has infinitely many singularities created by the ends of \(M_{\infty}^* \). However, the mass \(m_{ADM}(g_{\infty,AF}) \) of \((M_{\infty}^*, g_{\infty,AF})\) can be defined in the usual way (cf. \[4\]). Note also that the positive mass theorem for asymptotically flat 3-manifolds with singularities does not always hold (see \[1\] Remark 1.5-(2) for instance).

Once this is understood, the following positive mass theorem holds as a special case of \[1\] the first assertion of Theorem 1.4:
Proposition 2.1. Let \((M, C)\) be a closed 3-manifold with \(Y(M, C) > 0\). Let \((M_\infty, g_\infty)\) be a normal infinite Riemannian covering of \((M, g)\) such that \(\pi_1(M)\) has a descending chain of finite index subgroups tending to \(\pi_1(M_\infty)\), where \(g \in C\) is a positive scalar curvature metric and \(g_\infty\) is its lift to \(M_\infty\). For any point \(p_\infty \in M_\infty\), let \(G_\infty\) denote the normalized minimal positive Green's function on \(M_\infty^*\) with pole at \(p_\infty\). Then, the asymptotically flat 3-manifold \((M_\infty^*, g_\infty, AF)\) has nonnegative mass
\[
m_{\text{ADM}}(g_\infty, AF) \geq 0.
\]

Remark 2.2. Assume that \(M = \# \ell(S^1 \times S^2)\) for \(\ell \geq 2\) and \(M_\infty\) is its universal covering. Note that \(M_\infty\) is spin. For each small \(\sigma > 0\), consider the complete metric \(g_{\sigma, AF} := (G_\infty + \sigma)^4 \cdot g_\infty\) with \(R_{g_{\sigma, AF}} \geq 0\) on \(M_\infty^*\) (cf. [19] Proposition 4.4'). Then, only one end of \((M_\infty^*, g_{\sigma, AF})\) is asymptotically flat and the other infinitely many ends are merely complete. Gilles Carron and the referee kindly pointed out that Witten’s approach [21] (cf. [16]) to the Positive Mass Theorem is still valid for the family \((M_\infty^*, g_{\sigma, AF})\) of \(0 < \sigma < 1\). It implies that a more general positive mass theorem than Proposition 2.1 is a folk theorem for experts in this field, and Theorem 1.11 is too. But Proposition 2.1 itself is a complete form, and hence, by using it, we will give here an explicit and self-contained proof of Theorem 1.11.

A conformal 3-manifold \((M, C)\) is said to be locally conformally flat if, for any point \(p \in M\), there exists a metric \(\overline{g} \in C\) such that \(\overline{g}\) is flat on some neighborhood of \(p\). A conformal class \(C\) on \(M\) is called a flat conformal structure if \((M, C)\) is locally conformally flat. In [14], Kuiper proved that, for a simply connected locally conformally flat \(3\)-manifold \((X, C')\), there is a conformal immersion into \((S^3, C_0)\) called a developing map, which is unique up to composition with a Möbius transformation of \((S^3, C_0)\). Therefore, the universal covering of a locally conformally flat manifold \((M, C)\) admits a developing map. Here, \((S^3, C_0)\) denotes the 3-sphere \(S^3\) with the conformal class \(C_0 := [g_0]\) of the standard metric \(g_0\) of constant curvature one. \((M, C)\) is called Kleinian if \((M, C)\) is conformal to \(\Omega/\Gamma\) for some open set \(\Omega\) of \(S^3\) and some discrete subgroup \(\Gamma\) of the conformal transformation group Conf\((S^3, C_0)\), which leaves \(\Omega\) invariant and acts freely and properly discontinuously on \(\Omega\). Note that, if the developing map of the universal covering of a locally conformally flat manifold \((M, C)\) is injective, then \((M, C)\) is Kleinian.

With this understanding, the following criterion also holds as a special case of [19] Proposition 4.2:

Proposition 2.3. Let \((M, C)\) be a closed 3-manifold with \(Y(M, C) > 0\), and \((\widetilde{M}, \mathcal{G})\) be the universal Riemannian covering of \((M, g)\), where \(g \in C\) is a positive scalar curvature metric. For any point \(\overline{p} \in \widetilde{M}\), let \(G\) denote the normalized minimal positive Green’s function on \(\widetilde{M}\) for \(L_{\overline{g}}\) with pole at \(\overline{p}\), and \((\widetilde{M} - \{\overline{p}\}, \mathcal{G}_{\overline{p}}^4 \cdot \overline{g})\) the asymptotically flat 3-manifold as above. If the mass \(m_{\text{ADM}}(\mathcal{G}_{\overline{p}}^4 \cdot \overline{g})\) is nonnegative, then the developing map of \((M, [\overline{g}])\) is injective. In particular, \((M, C)\) is Kleinian.

Remark 2.4. We remark that the mass \(m_{\text{ADM}}(\mathcal{G}_{\overline{p}}^4 \cdot \overline{g})\) is equal to the ADM energy \(E\) of \((\widetilde{M} - \{\overline{p}\}, \mathcal{G}_{\overline{p}}^4 \cdot \overline{g})\) appearing in [19] page 64 up to a positive constant.

3. Proof of main theorem

Proof of Theorem 1.11 Consider the universal covering \(\widetilde{M}\) of \(M\) and denote the lift of the flat conformal structure \(C\) by \(\widetilde{C}\). If \(|\pi_1(M)| < \infty\), then \((\widetilde{M}, \widetilde{C})\) is conformal
to \((S^3, C_0)\) by Kuiper’s Theorem \cite{kuiper}. Hence, \((M, C)\) is Kleinian. From now on, we assume that \(|\pi_1(M)| = \infty\), that is, the degree of the covering map \(P : \tilde{M} \to M\) is infinite.

Take a unit-volume Yamabe metric \(g \in C\), and consider its lift \(\tilde{g} \in \tilde{C}\) to \(\tilde{M}\). Note that \(R_{\tilde{g}} = R_{\tilde{g}} = Y(M, C) > 0\). Take any base points \(p \in M, \tilde{p} \in \tilde{M}\) satisfying \(P(\tilde{p}) = p\), and fix them. Then, let \(\tilde{G}\) denote the normalized minimal positive Green function on \(\tilde{M}\) for \(L_{\tilde{g}}\) with pole at \(\tilde{p}\), and the mass \(m_{\text{ADM}}(\tilde{g}_{AF})\) of the asymptotically flat 3-manifold \((\tilde{M} - \{\tilde{p}\}, \tilde{g}_{AF} := G^4 \cdot \tilde{g})\).

Suppose that

\[
m_{\text{ADM}}(\tilde{g}_{AF}) \geq 0.
\]

Recall that we can choose the base point \(\tilde{p} \in \tilde{M}\) arbitrarily. It then follows from Proposition \[2.3\] that the developing map of \((\tilde{M}, \tilde{C})\) is injective, and hence \((M, C)\) is Kleinian. In this case, especially \(m_{\text{ADM}}(\tilde{g}_{AF}) = 0\). Therefore, it is enough to show that \(m_{\text{ADM}}(\tilde{g}_{AF}) \geq 0\).

By combining \[7\] Theorem \[8.1\] (cf. \[9\]) with \(Y(M, C) > 0\) (replacing \(M\) by its orientable double covering if necessary), \(M\) can be decomposed uniquely into prime closed 3-manifolds

\[
M = N_1 \# \cdots \# N_i \# \ell_2(S^1 \times S^2),
\]

where \(\pi_1(N_i)\) is finite for \(i = 1, \ldots, \ell_1\) and \(\ell_1, \ell_2\) are nonnegative integers. By applying the \(C\)-prime decomposition theorem for closed 3-manifolds with flat conformal structures \[10, 11\] to \((M, C)\), there exists a flat conformal structure \(C_i\) on each \(N_i (i = 1, \ldots, \ell_1)\). Then, Kuiper’s Theorem \[14\] again implies that each \((N_i, C_i)\) is a nontrivial quotient of \((S^3, C_0)\). After taking an appropriate finite covering \(M'\) of \(M\), we have

\[
M' = \#(S^1 \times S^2) \quad \text{for some} \quad \ell \geq 1.
\]

Recall that \(\tilde{M}\) is the infinite universal covering of \(M\). Then, there exists (uniquely) an infinite universal covering \(\tilde{M} \to M'\). Moreover, since \(\pi_1(M')\) is a finitely generated free group, it has a descending chain of finite index subgroups tending to \(\pi_1(M) = \{e\}\). Let \(g'\) be the lifting of \(g\) to \(M'\). Applying Proposition \[2.1\] to the normal infinite Riemannian covering \((\tilde{M}, \tilde{g}) \to (M', g')\), we have that

\[
m_{\text{ADM}}(\tilde{g}_{AF}) \geq 0.
\]

This completes the proof of Theorem \[1.1\].

\[\square\]

Remark 3.1. Even if we replace the positivity \(Y(M, C) > 0\) in Theorem \[1.1\] by the nonnegativity \(Y(M, C) \geq 0\), it seems that the same conclusion still holds. More precisely, we propose the following (cf. \[5, 13\]).

Conjecture. Let \(M\) be a closed 3-manifold with flat conformal structure \(C\). If its Yamabe constant is zero, then either (1) or (2) holds:

1. There exists a flat metric \(g \in C\).
2. There exists a smooth family \(\{g_t\}_{0 \leq t \leq 1}\) of locally conformally flat metrics on \(M\) such that \(g_0 \in C\) and \(Y(M, [g_t]) > 0\) (possibly \(Y(M, [g_t]) < 0\) for some \(t \in (0, 1)\)).

In the case (1), the universal covering \((\tilde{M}, \tilde{C})\) of \((M, C)\) is conformal to \((S^3 - \{p_N\}, C_0)\) where \(p_N := (1, 0, 0, 0) \in S^3\), and hence \((M, C)\) is Kleinian. In the case (2), Theorem \[1.1\] implies that \((M, [g_1])\) is Kleinian. The argument in the proof of
Theorem 1.1 also implies that there exists a torsion free subgroup \(\Gamma \) of finite index in \(\pi_1(M) \) such that \(\Gamma \) is either a trivial group or a nontrivial finitely generated free group. Then, the virtual cohomological dimension \(\text{vcd} \pi_1(M) \) of \(\pi_1(M) \) is either 0 or 1 (see [6]). Therefore, \((M,[g_1])\) is a closed Kleinian 3-manifold with \(\text{vcd} \pi_1(M) < 3 \). The quasi-conformal stability of Kleinian groups [12] Theorem 2 implies that any flat conformal structure on \(M \) which is a smooth deformation of \([g_1]\) is also Kleinian; in particular \(C \) is too.

Acknowledgements

The second author would like to thank Hiroyasu Izeki and Gilles Carron for helpful discussions and for useful comments respectively. The authors would like to thank the referee for crucial comments.

References

Department of Mathematics, University of Tsukuba, Tsukuba 305-8571, Japan

E-mail address: aiyama@math.tsukuba.ac.jp

Division of Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

E-mail address: akutagawa@math.is.tohoku.ac.jp