Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Copies of $ c_{0}(\Gamma)$ in $ C(K, X)$ spaces


Authors: Elói Medina Galego and James N. Hagler
Journal: Proc. Amer. Math. Soc. 140 (2012), 3843-3852
MSC (2010): Primary 46B03; Secondary 46B25
DOI: https://doi.org/10.1090/S0002-9939-2012-11208-0
Published electronically: March 2, 2012
MathSciNet review: 2944725
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend some results of Rosenthal, Cembranos, Freniche,
E. Saab-P. Saab and Ryan to study the geometry of copies and complemented copies of $ c_{0}(\Gamma )$ in the classical Banach spaces $ C(K, X)$ in terms of the cardinality of the set $ \Gamma $, of the density and caliber of $ K$ and of the geometry of $ X$ and its dual space $ X^*$. Here are two sample consequences of our results:

  1. If $ C([0,1], X)$ contains a copy of $ c_0(\aleph _1)$, then $ X$ contains a copy of $ c_0(\aleph _1)$.
  2. $ C(\beta \mathbb{N},X)$ contains a complemented copy of $ c_{0}(\aleph _{1})$ if and only if $ X$ contains a copy of $ c_{0}(\aleph _{1})$.
Some of our results depend on set-theoretic assumptions. For example, we prove that it is relatively consistent with ZFC that if $ C(K)$ contains a copy of $ c_0(\aleph _1)$ and $ X$ has dimension $ \aleph _1$, then $ C(K,X)$ contains a complemented copy of $ c_0(\aleph _1)$.

References [Enhancements On Off] (What's this?)

  • 1. S. A. Argyros, J. F. Castillo, A. S. Granero, M. Jimanez, J. P. Moreno, Complementation and embeddings of $ c_0(I)$ in Banach spaces. Proc. London Math. Soc. (3) 85 (2002), no. 3, 742-768. MR 1936819 (2003k:46022)
  • 2. P. Cembranos, $ C(K,E)$ contains a complemented copy of $ c_{0}$, Proc. Amer. Math. Soc. 91 (1984), no. 4, 556-558. MR 746089 (85g:46025)
  • 3. W. W. Comfort, S. A. Negrepontis, Chain conditions in topology, Cambridge Tracts in Mathematics, 79. Cambridge University Press, Cambridge-New York, 1982. MR 665100 (84k:04002)
  • 4. J. Diestel, J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, 15, Amer. Math. Soc. Providence, RI, 1977. MR 0453964 (56:12216)
  • 5. A. Dow, H. Junnila, J. Pelant, Chain conditions and weak topologies, Topology and its
    Applications 156 (2009), 1327-1344. MR 2502007 (2010c:46043)
  • 6. F. J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), no. 4, 479-486. MR 742894 (85f:46074)
  • 7. F. Galvin, Chain conditions and products, Fund. Math. 108 (1980), no. 1, 33-48. MR 585558 (81m:03058)
  • 8. J. N. Hagler, W. B. Johnson, Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), 325-330. MR 0482086 (58:2173)
  • 9. P. Holický, M. Smídek, L. Zajíček, Convex functions with non-Borel set of Gâteaux differentiability points, Comment. Math. Univ. Carolin. 39 (1998), no. 3, 469-482. MR 1666778 (99k:46073)
  • 10. T. Jech, Set Theory, Academic Press, New York-San Francisco-London, 1978. MR 506523 (80a:03062)
  • 11. B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Arkiv för Matematik 13 (1975), 79-89. MR 0374871 (51:11067)
  • 12. W. B. Johnson, J. Lindenstrauss, Handbook of the geometry of Banach spaces, North-Holland Publishing Co., Amsterdam, 2001, 1-84. MR 1863689 (2003f:46013)
  • 13. A. Nissenzweig, $ w^{\ast }$-sequential convergence, Israel J. Math. 22 (1979), 266-272. MR 0394134 (52:14939)
  • 14. H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970) 13-36. MR 0270122 (42:5015)
  • 15. H. P. Rosenthal, On injective Banach spaces and the spaces $ L^{\infty }(\mu )$ for finite measures $ \mu $, Acta Math. 124 (1970), 205-248. MR 0257721 (41:2370)
  • 16. H. P. Rosenthal, The Banach spaces $ C(K)$, Handbook of the geometry of Banach spaces, Vol. 2, 1547-1602, North-Holland, Amsterdam, 2003. MR 1999603 (2004g:46028)
  • 17. M. E. Rudin, Lectures on set-theoretic topology, American Mathematical Society, 1975. MR 0367886 (51:4128)
  • 18. R. A. Ryan, Complemented copies of $ c_{0}$ in spaces of compact operators, Proc. Roy. Irish Acad. Sect. A 91 (1991), no. 2, 239-241. MR 1173375 (93d:47084)
  • 19. Z. Semadeni, Banach spaces of continuous functions, Vol. I. Monografie Matematyczne, Tom 55, PWN-Polish Scientific Publishers, Warsaw, 1971. MR 0296671 (45:5730)
  • 20. E. Saab, P. Saab, On complemented copies of $ c_{0}$ in injective tensor products, Contemporary Mathematics, 52, Amer. Math. Soc., 1986, 131-135. MR 0840704 (87h:46050)
  • 21. S. Todorčević, Biorthogonal systems and quotient spaces via Baire category methods, Math. Ann. 335 (2006), no. 3, 687-715. MR 2221128 (2007d:46016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B03, 46B25

Retrieve articles in all journals with MSC (2010): 46B03, 46B25


Additional Information

Elói Medina Galego
Affiliation: Department of Mathematics, University of São Paulo, São Paulo, Brazil 05508-090
Email: eloi@ime.usp.br

James N. Hagler
Affiliation: Department of Mathematics, University of Denver, Denver, Colorado 80208
Email: jhagler@math.du.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11208-0
Keywords: $c_0(\gamma)$ spaces, $C(K,X)$ spaces, Josefson-Nissenzweig-$\alpha$ ($JN_\alpha)$ property.
Received by editor(s): February 25, 2011
Received by editor(s) in revised form: April 4, 2011, and April 21, 2011
Published electronically: March 2, 2012
Additional Notes: The authors thank the referee for insightful and helpful comments, which have led to a significant improvement in the exposition.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society