Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

An inductive analytic criterion for flatness


Authors: Janusz Adamus, Edward Bierstone and Pierre D. Milman
Journal: Proc. Amer. Math. Soc. 140 (2012), 3703-3713
MSC (2010): Primary 13C11, 32B99; Secondary 14B25
Published electronically: March 6, 2012
MathSciNet review: 2944711
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a constructive criterion for flatness of a morphism of analytic spaces $ \varphi : X \to Y$ (over $ \mathbb{K} = \mathbb{R}$ or $ \mathbb{C}$) or, more generally, for flatness over $ \mathcal {O}_Y$ of a coherent sheaf of $ \mathcal {O}_X$-modules $ \mathcal {F}$. The criterion is a combination of a simple linear-algebra condition ``in codimension zero'' and a condition ``in codimension one'' which can be used together with the Weierstrass preparation theorem to inductively reduce the fibre-dimension of the morphism $ \varphi $.


References [Enhancements On Off] (What's this?)

  • 1. J. Adamus, E. Bierstone and P.D. Milman, Geometric Auslander criterion for flatness, preprint 2009, arXiv:0901.2744v4, to appear in Amer. J. Math.
  • 2. Edward Bierstone and Pierre D. Milman, The local geometry of analytic mappings, Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa, 1988. MR 971251
  • 3. N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitre 10, Springer-Verlag, Berlin, 2007 (French). Reprint of the 1998 original. MR 2333539
  • 4. Adrien Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 1–95 (French). MR 0203082
  • 5. Jacques Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math. 4 (1967), 118–138 (French). MR 0222336
  • 6. André Galligo and Michal Kwieciński, Flatness and fibred powers over smooth varieties, J. Algebra 232 (2000), no. 1, 48–63. MR 1783912, 10.1006/jabr.2000.8384
  • 7. Heisuke Hironaka, Stratification and flatness, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 199–265. MR 0499286

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13C11, 32B99, 14B25

Retrieve articles in all journals with MSC (2010): 13C11, 32B99, 14B25


Additional Information

Janusz Adamus
Affiliation: Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7 – and – Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
Email: jadamus@uwo.ca

Edward Bierstone
Affiliation: The Fields Institute, 222 College Street, Toronto, Ontario, Canada M5T 3J1 – and – Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
Email: bierston@fields.utoronto.ca

Pierre D. Milman
Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
Email: milman@math.toronto.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11211-0
Keywords: Flat, Weierstrass preparation, local flattener, generic flatness
Received by editor(s): January 10, 2011
Received by editor(s) in revised form: April 25, 2011
Published electronically: March 6, 2012
Additional Notes: This research was partially supported by Natural Sciences and Engineering Research Council of Canada Discovery Grant OGP 355418-2008, Polish Ministry of Science Discovery Grant NN201 540538 (first author), and by NSERC Discovery Grants OGP 0009070 (second author) and OGP 0008949 (third author)
Communicated by: Lev Borisov
Article copyright: © Copyright 2012 American Mathematical Society