Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the recursion formula for double Hurwitz numbers

Author: Shengmao Zhu
Journal: Proc. Amer. Math. Soc. 140 (2012), 3749-3760
MSC (2010): Primary 14H10; Secondary 05E05
Published electronically: March 12, 2012
MathSciNet review: 2944715
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we will give a recursion formula for double Hurwitz numbers by the cut-join analysis. This recursion formula can be considered as a generalized version of the recursion formula for simple Hurwitz numbers derived by Mulase and Zhang. As a direct application, we get a polynomial identity for Goulden-Jackson-Vakil's conjectural intersection numbers and an explicit recursion formula for the computation of these intersection numbers with only $ \psi $-classes.

References [Enhancements On Off] (What's this?)

  • 1. L. Chen, Y. Li and K. Liu, Localization, Hurwitz numbers and the Witten conjecture, Asian J. Math. 12 (2008), 511-518. MR 2481688 (2009m:14084)
  • 2. T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297-327. MR 1864018 (2002j:14034)
  • 3. C. Faber, A conjectural description of the tautological ring of the moduli space of curves. In Moduli of curves and abelian varieties, Aspects Math., E33, Vieweg, Braunschweig, Germany, 1999, 109-129. MR 1722541 (2000j:14044)
  • 4. C. Faber and R. Pandharipande, Hodge integrals, partition matrices, and the $ \lambda _{g}$ conjecture, Ann. of Math. (2) 157 (2003), 97-124. MR 1954265 (2004b:14095)
  • 5. C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring (with an appendix by D. Zagier), Michigan Math. J. 48 (2000), 215-252. MR 1786488 (2002e:14041)
  • 6. I.P. Goulden and D.M. Jackson,Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997), 51-60. MR 1396978 (97j:05007)
  • 7. I.P. Goulden, D.M. Jackson and R. Vakil, Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005), 43-92. MR 2183250 (2006i:14023)
  • 8. I.P. Goulden, D.M. Jackson and R. Vakil, A short proof of the $ \lambda _{g}$-conjecture without Gromov-Witten theory: Hurwitz theory and the moduli of curves, J. Reine Angew. Math. 637 (2009), 175-191. MR 2599085 (2011f:14087)
  • 9. E. Getzler and R. Pandharipande, Virasoro constraints and the Chern classes of the Hodge bundle, Nuclear Phys. B 530 (1998), 701-714. MR 1653492 (2000b:14073)
  • 10. M. Kazarian and S. Lando, An algebro-geometric proof of Witten's conjecture, J. Amer. Math. Soc. 20 (2007), 1079-1089. MR 2328716 (2008d:14055)
  • 11. Y.S. Kim and K. Liu, A simple proof of Witten conjecture through localization, preprint, arXiv:math/0508384 [math.AG] (2005).
  • 12. A.M. Li, G. Zhao and Q. Zheng, The number of ramified coverings of a Riemann surface by Riemann surface, Commun. Math. Phys. 213 (2000), 685-696 . MR 1785434 (2001i:14078)
  • 13. K. Liu and H. Xu, New results of intersection numbers on moduli spaces of curves, Proc. Natl. Acad. Sci. USA 104 (2007), 13896-13900. MR 2348851 (2008f:14041)
  • 14. K. Liu and H. Xu, A proof of the Faber intersection number conjecture, J. Differential Geom. 83 (2009), 313-335. MR 2577471 (2011d:14051)
  • 15. M. Mulase and Naizhen Zhang, Polynomial recursion for linear Hodge integrals, Commun. Number Theory Phys. 4 (2010), 267-294. MR 2725053
  • 16. A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models, I, Proc. Symposia Pure Math. 80 (2009), 325-414. MR 2483941 (2009k:14111)
  • 17. E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surv. Differ. Geom. 1 (1991), 243-310. MR 1144529 (93e:32028)
  • 18. H. Xu, Hodge integrals on moduli spaces of curves, thesis submitted for the degree of Doctor of Philosophy of Zhejiang University, 2009.
  • 19. J. Zhou, Hodge integrals, Hurwitz numbers, and symmetric groups, arXiv:math/0308024.
  • 20. J. Zhou, On recursion relation for Hodge integrals from the cut-and-join equations, preprint, 2009.
  • 21. S. Zhu, Hodge integral with one $ \lambda $-class, Sci. China Math. 55 (2012), doi:10.1007/S11425-011-4313-7

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14H10, 05E05

Retrieve articles in all journals with MSC (2010): 14H10, 05E05

Additional Information

Shengmao Zhu
Affiliation: Department of Mathematics and Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China

Keywords: Hurwitz numbers, moduli space, cut-join, recursion
Received by editor(s): November 30, 2010
Received by editor(s) in revised form: April 28, 2011
Published electronically: March 12, 2012
Communicated by: Lev Borisov
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society