On the recursion formula for double Hurwitz numbers

Author:
Shengmao Zhu

Journal:
Proc. Amer. Math. Soc. **140** (2012), 3749-3760

MSC (2010):
Primary 14H10; Secondary 05E05

Published electronically:
March 12, 2012

MathSciNet review:
2944715

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we will give a recursion formula for double Hurwitz numbers by the cut-join analysis. This recursion formula can be considered as a generalized version of the recursion formula for simple Hurwitz numbers derived by Mulase and Zhang. As a direct application, we get a polynomial identity for Goulden-Jackson-Vakil's conjectural intersection numbers and an explicit recursion formula for the computation of these intersection numbers with only -classes.

**1.**Lin Chen, Yi Li, and Kefeng Liu,*Localization, Hurwitz numbers and the Witten conjecture*, Asian J. Math.**12**(2008), no. 4, 511–518. MR**2481688**, 10.4310/AJM.2008.v12.n4.a5**2.**Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein,*Hurwitz numbers and intersections on moduli spaces of curves*, Invent. Math.**146**(2001), no. 2, 297–327. MR**1864018**, 10.1007/s002220100164**3.**Carel Faber,*A conjectural description of the tautological ring of the moduli space of curves*, Moduli of curves and abelian varieties, Aspects Math., E33, Vieweg, Braunschweig, 1999, pp. 109–129. MR**1722541****4.**C. Faber and R. Pandharipande,*Hodge integrals, partition matrices, and the 𝜆_{𝑔} conjecture*, Ann. of Math. (2)**157**(2003), no. 1, 97–124. MR**1954265**, 10.4007/annals.2003.157.97**5.**C. Faber and R. Pandharipande,*Logarithmic series and Hodge integrals in the tautological ring*, Michigan Math. J.**48**(2000), 215–252. With an appendix by Don Zagier; Dedicated to William Fulton on the occasion of his 60th birthday. MR**1786488**, 10.1307/mmj/1030132716**6.**I. P. Goulden and D. M. Jackson,*Transitive factorisations into transpositions and holomorphic mappings on the sphere*, Proc. Amer. Math. Soc.**125**(1997), no. 1, 51–60. MR**1396978**, 10.1090/S0002-9939-97-03880-X**7.**I. P. Goulden, D. M. Jackson, and R. Vakil,*Towards the geometry of double Hurwitz numbers*, Adv. Math.**198**(2005), no. 1, 43–92. MR**2183250**, 10.1016/j.aim.2005.01.008**8.**I. P. Goulden, D. M. Jackson, and R. Vakil,*A short proof of the 𝜆_{𝑔}-conjecture without Gromov-Witten theory: Hurwitz theory and the moduli of curves*, J. Reine Angew. Math.**637**(2009), 175–191. MR**2599085**, 10.1515/CRELLE.2009.094**9.**E. Getzler and R. Pandharipande,*Virasoro constraints and the Chern classes of the Hodge bundle*, Nuclear Phys. B**530**(1998), no. 3, 701–714. MR**1653492**, 10.1016/S0550-3213(98)00517-3**10.**M. E. Kazarian and S. K. Lando,*An algebro-geometric proof of Witten’s conjecture*, J. Amer. Math. Soc.**20**(2007), no. 4, 1079–1089. MR**2328716**, 10.1090/S0894-0347-07-00566-8**11.**Y.S. Kim and K. Liu,*A simple proof of Witten conjecture through localization*, preprint, arXiv:math/0508384 [math.AG] (2005).**12.**An-Min Li, Guosong Zhao, and Quan Zheng,*The number of ramified covering of a Riemann surface by Riemann surface*, Comm. Math. Phys.**213**(2000), no. 3, 685–696. MR**1785434**, 10.1007/s002200000254**13.**Kefeng Liu and Hao Xu,*New results of intersection numbers on moduli spaces of curves*, Proc. Natl. Acad. Sci. USA**104**(2007), no. 35, 13896–13900. MR**2348851**, 10.1073/pnas.0705910104**14.**Kefeng Liu and Hao Xu,*A proof of the Faber intersection number conjecture*, J. Differential Geom.**83**(2009), no. 2, 313–335. MR**2577471****15.**Motohico Mulase and Naizhen Zhang,*Polynomial recursion formula for linear Hodge integrals*, Commun. Number Theory Phys.**4**(2010), no. 2, 267–293. MR**2725053**, 10.4310/CNTP.2010.v4.n2.a1**16.**A. Okounkov and R. Pandharipande,*Gromov-Witten theory, Hurwitz numbers, and matrix models*, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 325–414. MR**2483941**, 10.1090/pspum/080.1/2483941**17.**Edward Witten,*Two-dimensional gravity and intersection theory on moduli space*, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR**1144529****18.**H. Xu,*Hodge integrals on moduli spaces of curves*, thesis submitted for the degree of Doctor of Philosophy of Zhejiang University, 2009.**19.**J. Zhou,*Hodge integrals, Hurwitz numbers, and symmetric groups*, arXiv:math/0308024.**20.**J. Zhou,*On recursion relation for Hodge integrals from the cut-and-join equations*, preprint, 2009.**21.**S. Zhu,*Hodge integral with one -class*, Sci. China Math.**55**(2012), doi:10.1007/S11425-011-4313-7

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
14H10,
05E05

Retrieve articles in all journals with MSC (2010): 14H10, 05E05

Additional Information

**Shengmao Zhu**

Affiliation:
Department of Mathematics and Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China

Email:
zhushengmao@gmail.com

DOI:
https://doi.org/10.1090/S0002-9939-2012-11235-3

Keywords:
Hurwitz numbers,
moduli space,
cut-join,
recursion

Received by editor(s):
November 30, 2010

Received by editor(s) in revised form:
April 28, 2011

Published electronically:
March 12, 2012

Communicated by:
Lev Borisov

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.