Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convergence of $ {\sum}c_k f(k x)$ and the Lip $ \alpha$ class


Author: Christoph Aistleitner
Journal: Proc. Amer. Math. Soc. 140 (2012), 3893-3903
MSC (2010): Primary 42A61, 42A20
DOI: https://doi.org/10.1090/S0002-9939-2012-11237-7
Published electronically: March 21, 2012
MathSciNet review: 2944730
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By Carleson's theorem a trigonometric series $ \sum _{k=1}^\infty c_k \cos 2 \pi k x$ or $ \sum _{k=1}^\infty c_k \sin 2 \pi k x$ is a.e. convergent if

$\displaystyle \sum _{k =1}^\infty c_k^2 < \infty .$ (1)

Gaposhkin generalized this result to series of the form

$\displaystyle \sum _{k=1}^\infty c_k f(kx)$ (2)

for functions $ f$ satisfying $ f(x+1)=f(x),~\int _0^1 f(x)=0$ and belonging to the Lip $ \alpha $ class for some $ \alpha >1/2$. In the case $ \alpha \leq 1/2$ condition (1) is in general no longer sufficient to guarantee the a.e. convergence of (2).

For $ 0 < \alpha < 1/2$ Gaposhkin showed that (2) is a.e. convergent if

$\displaystyle \sum _{k=1}^\infty c_k^2 k^{1-2 \alpha } (\log k)^\beta < \infty \qquad \textrm {for some} \qquad \beta >1+2\alpha .$ (3)

In this paper we show that condition (3) can be significantly weakened for $ \alpha \in [1/4,1/2)$. In fact, we show that in this case the factor $ k^{1-2\alpha }(\log k)^\beta $ can be replaced by a factor which is asymptotically smaller than any positive power of $ k$.

References [Enhancements On Off] (What's this?)

  • 1. C. Aistleitner.
    The law of the iterated logarithm for $ \sum c_k f(n_kx)$.
    In Dependence in Probability, Analysis and Number Theory. A Volume in Memory of Walter Philipp, pages 21-34. Kendrick Press, 2010. MR 2731044
  • 2. C. Aistleitner and I. Berkes.
    On the central limit theorem for $ f(n_kx)$.
    Probab. Theory Related Fields, 146(1-2):267-289, 2010. MR 2550364 (2010i:42015)
  • 3. C. Aistleitner, P. A. Mayer, and V. Ziegler.
    Metric discrepancy theory, functions of bounded variation and gcd sums.
    Unif. Distribution Theory, 5(1):95-109, 2010. MR 2804665
  • 4. J. Arias de Reyna.
    Pointwise convergence of Fourier series, volume 1785 of Lecture Notes in Mathematics.
    Springer-Verlag, Berlin, 2002. MR 1906800 (2003h:42001)
  • 5. I. Berkes.
    On the convergence of $ \sum c_nf(nx)$ and the $ {\rm Lip}\ 1/2$ class.
    Trans. Amer. Math. Soc., 349(10):4143-4158, 1997. MR 1401764 (97m:42007)
  • 6. I. Berkes and M. Weber.
    On the convergence of $ \sum c_kf(n_kx)$.
    Mem. Amer. Math. Soc., 201(943):viii+72, 2009. MR 2541755 (2010g:42065)
  • 7. L. Carleson.
    On convergence and growth of partial sums of Fourier series.
    Acta Math., 116:135-157, 1966. MR 0199631 (33:7774)
  • 8. T. Dyer and G. Harman.
    Sums involving common divisors.
    J. London Math. Soc. (2), 34(1):1-11, 1986. MR 859143 (87k:11088)
  • 9. K. Fukuyama.
    The law of the iterated logarithm for discrepancies of $ \{\theta ^nx\}$.
    Acta Math. Hungar., 118(1-2):155-170, 2008. MR 2378547 (2008m:60049)
  • 10. V. F. Gapoškin.
    On series with respect to the system $ \{\varphi (nx)\}$.
    Mat. Sb. (N.S.), 69 (111):328-353, 1966. MR 0198039 (33:6198)
  • 11. V. F. Gapoškin.
    Convergence and divergence systems.
    Mat. Zametki, 4:253-260, 1968. MR 0233139 (38:1462)
  • 12. G. Harman.
    Metric number theory, volume 18 of London Mathematical Society Monographs. New Series.
    The Clarendon Press, Oxford University Press, New York, 1998. MR 1672558 (99k:11112)
  • 13. M. Kac.
    Convergence of certain gap series.
    Ann. of Math. (2), 44:411-415, 1943. MR 0008432 (5:4c)
  • 14. M. Loève.
    Probability theory. II.
    Graduate Texts in Mathematics, Vol. 46.
    Springer-Verlag, New York, fourth edition, 1978. MR 0651018 (58:31324b)
  • 15. C. J. Mozzochi.
    On the pointwise convergence of Fourier series.
    Lecture Notes in Mathematics, Vol. 199. Springer-Verlag, Berlin, 1971. MR 0445205 (56:3549)
  • 16. A. Zygmund.
    Trigonometric series. 2nd ed., Vols. I, II.
    Cambridge University Press, New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42A61, 42A20

Retrieve articles in all journals with MSC (2010): 42A61, 42A20


Additional Information

Christoph Aistleitner
Affiliation: Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
Email: aistleitner@math.tugraz.at

DOI: https://doi.org/10.1090/S0002-9939-2012-11237-7
Keywords: Almost everywhere convergence, Lipschitz classes
Received by editor(s): June 17, 2010
Received by editor(s) in revised form: March 7, 2011, and May 9, 2011
Published electronically: March 21, 2012
Additional Notes: This research was supported by the Austrian Research Foundation (FWF), Project S9603-N23. This paper was written while the author was a participant of the Oberwolfach Leibniz Fellowship Programme (OWLF) of the Mathematical Research Institute of Oberwolfach, Germany.
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society