Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Gaussian estimates for degenerate diffusion

Author: Michal Chovanec
Journal: Proc. Amer. Math. Soc. 140 (2012), 3947-3957
MSC (2010): Primary 35K65, 35K08, 47D06
Published electronically: March 23, 2012
MathSciNet review: 2944734
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove estimates of Gaussian type for the kernel of the semigroup associated to the operator $ m\triangle $, where $ m$ is a positive function which may vanish at the boundary (and thus the operator may not be strongly elliptic). No regularity conditions either on the boundary of the domain or on the function $ m$ are posed. The optimality of the growth condition on $ m$ is discussed.

References [Enhancements On Off] (What's this?)

  • 1. W. Arendt, A.V. Bukhvalov, Integral representations of resolvents and semigroups, Forum Math. 6 (1994), 111-135. MR 1253180 (94k:47062)
  • 2. W. Arendt, M. Chovanec, Dirichlet regularity and degenerate diffusion, Trans. Amer. Math. Soc. 362.11 (2010), 5861-5878. MR 2661499 (2011f:35143)
  • 3. W. Arendt, A.F.M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38.1 (1997), 87-130. MR 1462017 (98k:47094)
  • 4. M. Chovanec, Degenerate Diffusion - Behaviour at the Boundary and Kernel Estimates, PhD thesis, University of Ulm, 2010.
  • 5. M. Chovanec, Ultracontractivity for the degenerate diffusion, Ulmer Seminare, 2007/08.
  • 6. E. B. Davies, Heat Kernels and Spectral Theory, University Press, Cambridge, 1989. MR 990239 (90e:35123)
  • 7. E. B. Davies, $ L^1$ properties of second order elliptic operators, Bull. London Math. Soc. 17 (1985), 417-436. MR 806008 (87g:58126)
  • 8. E. B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59 (1984), 335-395. MR 766493 (86e:47054)
  • 9. X. T. Duong, E. M. Ouhabaz, Complex multiplicative perturbations of elliptic operators: Heat kernel bounds and holomorphic functional calculus, Diff. Integ. Eq. 12 (1999), no. 3, 395-418. MR 1674426 (2000a:47096)
  • 10. D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. MR 737190 (86c:35035)
  • 11. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg-New York, 1980.
  • 12. E. M. Ouhabaz, Analysis of heat equations on domains, Princeton University Press, Princeton, NJ, 2005. MR 2124040 (2005m:35001)
  • 13. M. M. H. Pang, $ L^1$ properties of two classes of singular second order elliptic operators,
    J. London Math. Soc. 38 (1988), 525-543. MR 972136 (90b:35168)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35K65, 35K08, 47D06

Retrieve articles in all journals with MSC (2010): 35K65, 35K08, 47D06

Additional Information

Michal Chovanec
Affiliation: Graduiertenkolleg 1100, University of Ulm, 89081 Ulm, Germany
Address at time of publication: Departement Mathematik, HG J 43, ETH Zürich, Rämisstrasse 101, 8092 Zürich, Switzerland

Keywords: Heat equation, degenerate diffusion, kernel estimates, semigroups
Received by editor(s): October 25, 2010
Received by editor(s) in revised form: May 11, 2011
Published electronically: March 23, 2012
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society