A generalization of Pillen's theorem for principal series modules
Author:
Yutaka Yoshii
Journal:
Proc. Amer. Math. Soc. 140 (2012), 3761-3768
MSC (2010):
Primary 20C33
DOI:
https://doi.org/10.1090/S0002-9939-2012-11395-4
Published electronically:
March 13, 2012
MathSciNet review:
2944716
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a connected, semisimple and simply connected algebraic group defined and split over the finite field of order
. Pillen proved in 1997 that the highest weight vectors of some Weyl
-modules generate the principal series modules as submodules for the corresponding finite Chevalley groups. This result is generalized in this paper.
- 1. H. H. Andersen, A sum formula for tilting modules, J. Pure and Applied Algebra 152 (2000), 17-40. MR 1783982 (2001g:20057)
- 2. R.W. Carter and G. Lusztig, Modular representations of finite groups of Lie type, Proc. London Math. Soc. 32 (1976), 347-384. MR 0396731 (53:592)
- 3. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts Math. 9, Springer, 1972. MR 0323842 (48:2197)
- 4. J. C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. Reine Angew. Math. 317 (1980), 157-199. MR 581341 (82b:20057)
- 5.
J. C. Jantzen, Zur Reduktion modulo
der Charaktere von Deligne und Lusztig, J. Algebra 70 (1981), 452-474. MR 623819 (82m:20045)
- 6. J. C. Jantzen, Filtrierungen der Darstellungen in der Hauptserie endlicher Chevalley-Gruppen, Proc. London Math. Soc. (3) 49 (1984), 445-482. MR 759299 (86e:20050)
- 7. J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Math. Surveys Monogr. 107, Amer. Math. Soc., 2003. MR 2015057 (2004h:20061)
- 8.
O. Mathieu, Filtrations of
-modules, Ann. Sci. Éc. Norm. Super., II. Ser. 23 (1990), 625-644. MR 1072820 (92a:20044)
- 9.
C. Pillen, Reduction modulo
of some Deligne-Lusztig characters, Arch. Math. 61 (1993), 421-433. MR 1241047 (94i:20026)
- 10. C. Pillen, Loewy series for principal series representations of finite Chevalley groups, J. Algebra 189 (1997), 101-124. MR 1432367 (98a:20019)
- 11.
F.A. Richen, Modular representations of split
-pairs, Trans. Amer. Math. Soc. 140 (1969), 435-460. MR 0242972 (39:4299)
- 12.
H. Sawada, A characterization of the modular representations of finite groups with split (
,
)-pairs, Math. Z. 155 (1977), 29-41. MR 0450384 (56:8679)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20C33
Retrieve articles in all journals with MSC (2010): 20C33
Additional Information
Yutaka Yoshii
Affiliation:
Department of Liberal Studies, Nara National College of Technology, Yamatokoriyama, Nara, 639-1080, Japan
Email:
yyoshii@libe.nara-k.ac.jp
DOI:
https://doi.org/10.1090/S0002-9939-2012-11395-4
Received by editor(s):
April 29, 2011
Published electronically:
March 13, 2012
Communicated by:
Pham Huu Tiep
Article copyright:
© Copyright 2012
American Mathematical Society