A note on simple -points of -functions

Authors:
S. M. Gonek, S. J. Lester and M. B. Milinovich

Journal:
Proc. Amer. Math. Soc. **140** (2012), 4097-4103

MSC (2010):
Primary 11M06, 11M26

DOI:
https://doi.org/10.1090/S0002-9939-2012-11275-4

Published electronically:
April 10, 2012

MathSciNet review:
2957199

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove, subject to certain hypotheses, that a positive proportion of the -points of the Riemann zeta-function and Dirichlet -functions with primitive characters are simple and discuss corresponding results for other functions in the Selberg class. We also prove an unconditional result of this type for the -points in fixed strips to the right of the line .

**1.**P. J. Bauer,*Zeros of Dirichlet -series on the critical line*, Acta Arith.**93**(2000), 37-52. MR**1760087 (2001h:11113)****2.**B. C. Berndt,*The number of zeros for*, J. London Math. Soc. (2)**2**(1970), 577-580. MR**0266874 (42:1776)****3.**V. Borchsenius and B. Jessen,*Mean motions and values of the Riemann zeta function*, Acta Math.**80**(1948), 97-166. MR**0027796 (10:356b)****4.**H. M. Bui, J. B. Conrey, and M. P. Young,*More than 41% of the zeros of the zeta function are on the critical line*, to appear in Acta Arith. Available on the`arXiv`at`http://arxiv.org/pdf/1002.4127v2`.**5.**R. Garunkštis and J. Steuding,*On the roots of the equation*, preprint. Available on the`arXiv`at`http://arxiv.org/abs/1011.5339v1`.**6.**N. Levinson,*Almost all roots of are arbitrarily close to*, Proc. Nat. Acad. Sci. USA**72**(1975), 1322-1324. MR**0406952 (53:10737)****7.**N. Levinson and H. L. Montgomery,*Zeros of the derivatives of the Riemann zeta-function*, Acta Math.**133**(1974), 49-65. MR**0417074 (54:5135)****8.**K. Powell,*Topics in analytic number theory*, master's thesis, Brigham Young University, Provo, Utah, 2009.**9.**A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in:*Proceedings of the Amalfi Conference on Analytic Number Theory*, Maiori 1989, E. Bombieri et al. (eds.), Università di Salerno, 1992, 367-385. MR**1220477 (94f:11085)****10.**A. Speiser,*Geometrisches zur Riemannschen Zeta Funktion*, Math. Ann.**110**(1934), 514-521.**11.**E. C. Titchmarsh,*The theory of the Riemann zeta-function*, 2nd Edition, revised by D. R. Heath-Brown, Oxford University Press, 1986. MR**882550 (88c:11049)****12.**K. M. Tsang,*The distribution of the values of the Riemann zeta-function*, Ph.D. dissertation, Princeton Univ., Princeton, NJ, 1984. MR**2633927****13.**S. M. Voronin,*Theorem on the ``universality'' of the Riemann zeta-function*, Izv. Akad. Nauk SSSR Ser. Mat.**39**(1975), 475-486. See also: Math. USSR Izvestija**9**(1975), 443-453. MR**0472727 (57:12419)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
11M06,
11M26

Retrieve articles in all journals with MSC (2010): 11M06, 11M26

Additional Information

**S. M. Gonek**

Affiliation:
Department of Mathematics, University of Rochester, Rochester, New York 14627

Email:
gonek@math.rochester.edu

**S. J. Lester**

Affiliation:
Department of Mathematics, University of Rochester, Rochester, New York 14627

Email:
lester@math.rochester.edu

**M. B. Milinovich**

Affiliation:
Department of Mathematics, University of Mississippi, University, Mississippi 38677

Email:
mbmilino@olemiss.edu

DOI:
https://doi.org/10.1090/S0002-9939-2012-11275-4

Keywords:
$a$-points,
simple zeros,
Riemann zeta-function,
$L$-functions,
Selberg class

Received by editor(s):
March 18, 2011

Received by editor(s) in revised form:
May 18, 2011, and May 24, 2011

Published electronically:
April 10, 2012

Additional Notes:
Research of the first author was partially supported by NSF grant DMS-0653809.

Communicated by:
Matthew A. Papanikolas

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.