Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on simple $ a$-points of $ L$-functions


Authors: S. M. Gonek, S. J. Lester and M. B. Milinovich
Journal: Proc. Amer. Math. Soc. 140 (2012), 4097-4103
MSC (2010): Primary 11M06, 11M26
DOI: https://doi.org/10.1090/S0002-9939-2012-11275-4
Published electronically: April 10, 2012
MathSciNet review: 2957199
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove, subject to certain hypotheses, that a positive proportion of the $ a$-points of the Riemann zeta-function and Dirichlet $ L$-functions with primitive characters are simple and discuss corresponding results for other functions in the Selberg class. We also prove an unconditional result of this type for the $ a$-points in fixed strips to the right of the line $ \Re s=1/2$.


References [Enhancements On Off] (What's this?)

  • 1. P. J. Bauer, Zeros of Dirichlet $ L$-series on the critical line, Acta Arith. 93 (2000), 37-52. MR 1760087 (2001h:11113)
  • 2. B. C. Berndt, The number of zeros for $ \zeta ^{(k)}(s)$, J. London Math. Soc. (2) 2 (1970), 577-580. MR 0266874 (42:1776)
  • 3. V. Borchsenius and B. Jessen, Mean motions and values of the Riemann zeta function, Acta Math. 80 (1948), 97-166. MR 0027796 (10:356b)
  • 4. H. M. Bui, J. B. Conrey, and M. P. Young, More than 41% of the zeros of the zeta function are on the critical line, to appear in Acta Arith. Available on the arXiv at http://arxiv.org/pdf/1002.4127v2.
  • 5. R. Garunkštis and J. Steuding, On the roots of the equation $ \zeta (s)=a$, preprint. Available on the arXiv at http://arxiv.org/abs/1011.5339v1.
  • 6. N. Levinson, Almost all roots of $ \zeta (s)=a$ are arbitrarily close to $ \sigma =1/2$, Proc. Nat. Acad. Sci. USA 72 (1975), 1322-1324. MR 0406952 (53:10737)
  • 7. N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133 (1974), 49-65. MR 0417074 (54:5135)
  • 8. K. Powell, Topics in analytic number theory, master's thesis, Brigham Young University, Provo, Utah, 2009.
  • 9. A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori 1989, E. Bombieri et al. (eds.), Università di Salerno, 1992, 367-385. MR 1220477 (94f:11085)
  • 10. A. Speiser, Geometrisches zur Riemannschen Zeta Funktion, Math. Ann. 110 (1934), 514-521.
  • 11. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd Edition, revised by D. R. Heath-Brown, Oxford University Press, 1986. MR 882550 (88c:11049)
  • 12. K. M. Tsang, The distribution of the values of the Riemann zeta-function, Ph.D. dissertation, Princeton Univ., Princeton, NJ, 1984. MR 2633927
  • 13. S. M. Voronin, Theorem on the ``universality'' of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 475-486. See also: Math. USSR Izvestija 9 (1975), 443-453. MR 0472727 (57:12419)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11M06, 11M26

Retrieve articles in all journals with MSC (2010): 11M06, 11M26


Additional Information

S. M. Gonek
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
Email: gonek@math.rochester.edu

S. J. Lester
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
Email: lester@math.rochester.edu

M. B. Milinovich
Affiliation: Department of Mathematics, University of Mississippi, University, Mississippi 38677
Email: mbmilino@olemiss.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11275-4
Keywords: $a$-points, simple zeros, Riemann zeta-function, $L$-functions, Selberg class
Received by editor(s): March 18, 2011
Received by editor(s) in revised form: May 18, 2011, and May 24, 2011
Published electronically: April 10, 2012
Additional Notes: Research of the first author was partially supported by NSF grant DMS-0653809.
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society