Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the uniqueness of solutions for the Yamabe problem


Authors: L. L. de Lima, P. Piccione and M. Zedda
Journal: Proc. Amer. Math. Soc. 140 (2012), 4351-4357
MSC (2010): Primary 53C25, 58E11
DOI: https://doi.org/10.1090/S0002-9939-2012-11284-5
Published electronically: April 20, 2012
MathSciNet review: 2957225
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using recent results on the compactness of the space of solutions of the Yamabe problem, we show that in conformal classes of metrics near the class of a nondegenerate solution which is unique (up to scaling) the Yamabe problem has a unique solution as well. This provides examples of a local extension, in the space of conformal classes, of a well-known uniqueness criterion due to Obata.


References [Enhancements On Off] (What's this?)

  • 1. T. Aubin, Équations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. MR 0431287 (55:4288)
  • 2. A. L. Besse, Einstein manifolds, reprint of the 1987 edition. Classics in Mathematics, Springer-Verlag, Berlin, 2008. MR 2371700 (2008k:53084)
  • 3. C. Böhm, M. Wang, W. Ziller, A variational approach for compact homogeneous Einstein manifolds, Geom. Funct. Anal. 14 (2004), no. 4, 681-733. MR 2084976 (2005g:53074)
  • 4. S. Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008), no. 4, 951-979. MR 2425176 (2009m:53084)
  • 5. S. Brendle, F. C. Marques, Blow-up phenomena for the Yamabe equation. II, J. Differential Geom.81 (2009), no. 2, 225-250. MR 2472174 (2010k:53050)
  • 6. S. Brendle, F. C. Marques, Recent progress on the Yamabe problem, preprint, arXiv:1010.4960v1.
  • 7. L. L. de Lima, P. Piccione, M. Zedda, On bifurcation of solutions of the Yamabe problem in product manifolds, preprint, arXiv:1012.1497v1.
  • 8. M. A. Khuri, F. C. Marques, R. M. Schoen, A compactness theorem for the Yamabe problem, J. Differential Geom. 81 (2009), no. 1, 143-196. MR 2477893 (2010e:53065)
  • 9. N. Koiso, On the second derivative of the total scalar curvature, Osaka J. Math. 16 (1979), 413-421. MR 539596 (80j:53047)
  • 10. N. Koiso, A decomposition of the space $ \mathcal M$ of Riemannian metrics on a manifold, Osaka J. Math. 16 (1979), 423-429. MR 539597 (80g:53034)
  • 11. Y. Y. Li, L. Zhang, Compactness of solutions to the Yamabe problem. II, Calc. Var. Partial Differential Equations 24 (2005), no. 2, 185-237. MR 2164927 (2006f:53049)
  • 12. Y. Y. Li, L. Zhang, Compactness of solutions to the Yamabe problem. III, J. Funct. Anal.245 (2007), 438-474. MR 2309836 (2008f:53038)
  • 13. F. C. Marques, A priori estimates for the Yamabe problem in the non-locally conformally flat case, J. Differential Geom. 71 (2005), no. 2, 315-346. MR 2197144 (2006i:53046)
  • 14. M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247-258. MR 0303464 (46:2601)
  • 15. J. Petean, Metrics of constant scalar curvature conformal to Riemannian products, Proc. Amer.Math. Soc. 138 (2010), no. 8, 2897-2905. MR 2644902
  • 16. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,
    J. Diff.Geom. 20 (1984), 479-495. MR 788292 (86i:58137)
  • 17. R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations, Lecture Notes in Mathematics, 1365, Springer, Berlin, 1989, 120-154. MR 994021 (90g:58023)
  • 18. N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Annali Scuola Norm. Sup. Pisa 22 (1968), 265-274. MR 0240748 (39:2093)
  • 19. H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka J. Math.12 (1960), 21-37. MR 0125546 (23:A2847)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C25, 58E11

Retrieve articles in all journals with MSC (2010): 53C25, 58E11


Additional Information

L. L. de Lima
Affiliation: Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 60455-760, Brazil

P. Piccione
Affiliation: Departamento de Matemática, Universidade de São Paulo, São Paulo, 05508-090, Brazil

M. Zedda
Affiliation: Università degli Studi di Cagliari, Via Università 240, 09124 Cagliari, Italy
Address at time of publication: Departamento de Matemática, Universidade de São Paulo, São Paulo, 05508-090, Brazil

DOI: https://doi.org/10.1090/S0002-9939-2012-11284-5
Received by editor(s): February 11, 2011
Received by editor(s) in revised form: February 15, 2011, and June 2, 2011
Published electronically: April 20, 2012
Additional Notes: The first author is partially sponsored by CNPq and Funcap, Brazil.
The second author is partially sponsored by CNPq and Fapesp, Brazil.
The third author is supported by RAS through a grant financed with the “Sardinia PO FSE 2007-2013” funds and provided according to the L.R. 7/2007.
Communicated by: Jianguo Cao
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society