Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Auslander-Reiten components determined by their composition factors


Authors: Alicja Jaworska, Piotr Malicki and Andrzej Skowroński
Journal: Proc. Amer. Math. Soc. 140 (2012), 4131-4140
MSC (2010): Primary 16G10, 16G70; Secondary 16E20
DOI: https://doi.org/10.1090/S0002-9939-2012-11298-5
Published electronically: April 26, 2012
MathSciNet review: 2957203
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide sufficient conditions for a component of the Auslander-Reiten quiver of an Artin algebra to be determined by the composition factors of its indecomposable modules.


References [Enhancements On Off] (What's this?)

  • 1. I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65 (Cambridge Univ. Press, 2006). MR 2197389 (2006j:16020)
  • 2. M. Auslander, Representation theory of Artin algebras II, Comm. Algebra 1 (1974), 269-310. MR 0349747 (50:2240)
  • 3. M. Auslander and I. Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), 280-301. MR 784524 (86i:16032)
  • 4. M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36 (Cambridge Univ. Press, 1995). MR 1314422 (96c:16015)
  • 5. K. Erdmann, O. Kerner and A. Skowroński, Self-injective algebras of wild tilted type, J. Pure Appl. Algebra 149 (2000), 127-176. MR 1757729 (2001g:16033)
  • 6. D. Happel, Composition factors of indecomposable modules, Proc. Amer. Math. Soc. 86 (1982), 29-31. MR 663860 (84i:16031)
  • 7. D. Happel and S. Liu, Module categories without short cycles are of finite type, Proc. Amer. Math. Soc. 120 (1994), 371-375. MR 1164144 (94d:16010)
  • 8. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. MR 675063 (84d:16027)
  • 9. A. Jaworska, P. Malicki and A. Skowroński, On Auslander-Reiten components of algebras without external short paths, J. Lond. Math. Soc. (2) 85 (2012), 245-268.
  • 10. O. Kerner and A. Skowroński, Quasitilted one-point extensions of wild hereditary algebras, J. Algebra 244 (2001), 785-827. MR 1859048 (2002h:16030)
  • 11. H. Lenzing and J. A. de la Peña, Concealed-canonical algebras and separating tubular families, Proc. Lond. Math. Soc. (3) 78 (1999), 513-540. MR 1674837 (2000c:16018)
  • 12. H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181. MR 1414820 (97j:16019)
  • 13. S. Liu, The degrees of irreducible maps and the shapes of the components of the Auslander-Reiten quivers, J. Lond. Math. Soc. (2) 45 (1992), 32-54. MR 1157550 (93f:16015)
  • 14. S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. Lond. Math. Soc. (2) 47 (1993), 405-416. MR 1214905 (94a:16024)
  • 15. I. Reiten and A. Skowroński, Sincere stable tubes, J. Algebra 232 (2000), 64-75. MR 1783913 (2001i:16031)
  • 16. I. Reiten, A. Skowroński and S. O. Smalø, Short chains and short cycles of modules, Proc. Amer. Math. Soc. 117 (1993), 343-354. MR 1136238 (93d:16013)
  • 17. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099 (Springer-Verlag, 1984). MR 774589 (87f:16027)
  • 18. C. M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chin. Ann. Math. Ser. B 9 (1988), 1-18. MR 943675 (89e:16036)
  • 19. C. M. Ringel, The canonical algebras, with an appendix by W. Crawley-Boevey, Topics in Algebra, Banach Center Publ. 26, Part 1 (PWN Warsaw, 1990), 407-432. MR 1171247 (93e:16022)
  • 20. D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Stud. Texts 71 (Cambridge Univ. Press, 2007). MR 2360503 (2009f:16001)
  • 21. D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras, London Math. Soc. Stud. Texts 72 (Cambridge Univ. Press, 2007). MR 2382332 (2008m:16001)
  • 22. A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543. MR 1276836 (95d:16022)
  • 23. A. Skowroński, On the composition factors of periodic modules, J. Lond. Math. Soc. (2) 49 (1994), 477-492. MR 1271544 (95g:16011)
  • 24. A. Skowroński, Cycles in module categories, Finite Dimensional Algebras and Related Topics, NATO ASI Series, Series C: Math. and Phys. Sciences 424 (Kluwer Acad. Publ., 1994), 309-345. MR 1308994 (96a:16010)
  • 25. A. Skowroński, On omnipresent tubular families of modules, Representation Theory of Algebras, Canad. Math. Soc. Conf. Proc. 18 (Amer. Math. Soc., Providence, RI, 1996), 641-657. MR 1388078 (97f:16032)
  • 26. A. Skowroński, A construction of complex syzygy periodic modules over symmetric algebras, Colloq. Math. 103 (2005), 61-69. MR 2148950 (2006c:16026)
  • 27. Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. MR 1118014 (92f:16017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16G10, 16G70, 16E20

Retrieve articles in all journals with MSC (2010): 16G10, 16G70, 16E20


Additional Information

Alicja Jaworska
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Email: jaworska@mat.uni.torun.pl

Piotr Malicki
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Email: pmalicki@mat.uni.torun.pl

Andrzej Skowroński
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Email: skowron@mat.uni.torun.pl

DOI: https://doi.org/10.1090/S0002-9939-2012-11298-5
Keywords: Auslander-Reiten quiver, component quiver, composition factors
Received by editor(s): December 10, 2010
Received by editor(s) in revised form: April 19, 2011, and June 3, 2011
Published electronically: April 26, 2012
Additional Notes: This research was supported by the Research Grant N N201 269135 of the Polish Ministry of Science and Higher Education.
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society