Thurston's spinning construction and solutions to the hyperbolic gluing equations for closed hyperbolic 3manifolds
Authors:
Feng Luo, Stephan Tillmann and Tian Yang
Journal:
Proc. Amer. Math. Soc. 141 (2013), 335350
MSC (2010):
Primary 57M25, 57N10
Published electronically:
August 17, 2012
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that the hyperbolic structure on a closed, orientable, hyperbolic 3manifold can be constructed from a solution to the hyperbolic gluing equations using any triangulation with essential edges. The key ingredients in the proof are Thurston's spinning construction and a volume rigidity result attributed by Dunfield to Thurston, Gromov and Goldman. As an application, we show that this gives a new algorithm to detect hyperbolic structures and small Seifert fibred structures on closed 3manifolds.
 1.
Thomas
Becker and Volker
Weispfenning, Gröbner bases, Graduate Texts in
Mathematics, vol. 141, SpringerVerlag, New York, 1993. A
computational approach to commutative algebra; In cooperation with Heinz
Kredel. MR
1213453 (95e:13018)
 2.
Riccardo
Benedetti and Carlo
Petronio, Lectures on hyperbolic geometry, Universitext,
SpringerVerlag, Berlin, 1992. MR 1219310
(94e:57015)
 3.
Benjamin A. Burton: Regina: Normal Surface and Manifold Topology Software, 19992009, http://regina.sourceforge.net/.
 4.
HuaiDong
Cao and XiPing
Zhu, A complete proof of the Poincaré and geometrization
conjectures—application of the HamiltonPerelman theory of the Ricci
flow, Asian J. Math. 10 (2006), no. 2,
165–492. MR 2233789
(2008d:53090), http://dx.doi.org/10.4310/AJM.2006.v10.n2.a2
HuaiDong
Cao and XiPing
Zhu, Erratum to: “A complete proof of the Poincaré and
geometrization conjectures—application of the HamiltonPerelman
theory of the Ricci flow” [Asian J. Math. 10 (2006), no. 2,
165–492; MR 2233789], Asian J. Math. 10 (2006),
no. 4, 663. MR 2282358
(2008d:53091), http://dx.doi.org/10.4310/AJM.2006.v10.n4.e2
 5.
David
Coulson, Oliver
A. Goodman, Craig
D. Hodgson, and Walter
D. Neumann, Computing arithmetic invariants of 3manifolds,
Experiment. Math. 9 (2000), no. 1, 127–152. MR 1758805
(2001c:57014)
 6.
David
Cox, John
Little, and Donal
O’Shea, Ideals, varieties, and algorithms, 3rd ed.,
Undergraduate Texts in Mathematics, Springer, New York, 2007. An
introduction to computational algebraic geometry and commutative algebra.
MR
2290010 (2007h:13036)
 7.
Nathan
M. Dunfield, Cyclic surgery, degrees of maps of character curves,
and volume rigidity for hyperbolic manifolds, Invent. Math.
136 (1999), no. 3, 623–657. MR 1695208
(2000d:57022), http://dx.doi.org/10.1007/s002220050321
 8.
Stefano
Francaviglia, Hyperbolic volume of representations of fundamental
groups of cusped 3manifolds, Int. Math. Res. Not. 9
(2004), 425–459. MR 2040346
(2004m:57032), http://dx.doi.org/10.1155/S1073792804131619
 9.
Stefano
Francaviglia and Ben
Klaff, Maximal volume representations are Fuchsian, Geom.
Dedicata 117 (2006), 111–124. MR 2231161
(2007d:51019), http://dx.doi.org/10.1007/s1071100590330
 10.
David
Gabai, Robert
Meyerhoff, and Peter
Milley, Minimum volume cusped hyperbolic
threemanifolds, J. Amer. Math. Soc.
22 (2009), no. 4,
1157–1215. MR 2525782
(2011a:57031), http://dx.doi.org/10.1090/S0894034709006390
 11.
William
Jaco and Jeffrey
L. Tollefson, Algorithms for the complete decomposition of a closed
3manifold, Illinois J. Math. 39 (1995), no. 3,
358–406. MR 1339832
(97a:57014)
 12.
Feng
Luo, Continuity of the volume of simplices in classical
geometry, Commun. Contemp. Math. 8 (2006),
no. 3, 411–431. MR 2230889
(2007f:52026), http://dx.doi.org/10.1142/S0219199706002179
 13.
Feng Luo: Volume optimization, normal surfaces and Thurston's equation on triangulated manifolds, Preprint, arXiv:0903.1138v1.
 14.
Feng
Luo and Stephan
Tillmann, Angle structures and normal
surfaces, Trans. Amer. Math. Soc.
360 (2008), no. 6,
2849–2866. MR 2379778
(2009b:57046), http://dx.doi.org/10.1090/S0002994708043018
 15.
Bruce
Kleiner and John
Lott, Notes on Perelman’s papers, Geom. Topol.
12 (2008), no. 5, 2587–2855. MR 2460872
(2010h:53098), http://dx.doi.org/10.2140/gt.2008.12.2587
 16.
R.
Loos, Computing in algebraic extensions, Computer algebra,
Springer, Vienna, 1983, pp. 173–187. MR
728972
 17.
Jason
Manning, Algorithmic detection and description of hyperbolic
structures on closed 3manifolds with solvable word problem, Geom.
Topol. 6 (2002), 1–25 (electronic). MR 1885587
(2002k:57043), http://dx.doi.org/10.2140/gt.2002.6.1
 18.
Peter
Milley, Minimum volume hyperbolic 3manifolds, J. Topol.
2 (2009), no. 1, 181–192. MR 2499442
(2010d:57018), http://dx.doi.org/10.1112/jtopol/jtp006
 19.
John
Milnor, Collected papers. Vol. 1, Publish or Perish Inc.,
Houston, TX, 1994. Geometry. MR 1277810
(95c:01043)
 20.
John
Morgan and Gang
Tian, Ricci flow and the Poincaré conjecture, Clay
Mathematics Monographs, vol. 3, American Mathematical Society,
Providence, RI, 2007. MR 2334563
(2008d:57020)
 21.
John Morgan and Gang Tian: Completion of the Proof of the Geometrization Conjecture, arXiv:0809.4040v1.
 22.
R.
C. Penner, The decorated Teichmüller space of punctured
surfaces, Comm. Math. Phys. 113 (1987), no. 2,
299–339. MR
919235 (89h:32044)
 23.
Grisha Perelman: The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159.
 24.
Grisha Perelman: Finite extinction time for the solutions to the Ricci flow on certain threemanifolds, arXiv:math/0307245.
 25.
Grisha Perelman: Ricci flow with surgery on threemanifolds, arXiv:math/0303109.
 26.
John
G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed.,
Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478
(2007d:57029)
 27.
J.
Hyam Rubinstein, An algorithm to recognise small Seifert fiber
spaces, Turkish J. Math. 28 (2004), no. 1,
75–87. MR
2056761 (2005b:57042)
 28.
Z.
Sela, The isomorphism problem for hyperbolic groups. I, Ann.
of Math. (2) 141 (1995), no. 2, 217–283. MR 1324134
(96b:20049), http://dx.doi.org/10.2307/2118520
 29.
William
P. Thurston, Hyperbolic structures on 3manifolds. I. Deformation
of acylindrical manifolds, Ann. of Math. (2) 124
(1986), no. 2, 203–246. MR 855294
(88g:57014), http://dx.doi.org/10.2307/1971277
 30.
William P. Thurston: The geometry and topology of manifolds, Princeton Univ. Math. Dept. (1978). Available from http://msri.org/publications/books/gt3m/.
 31.
Tomoyoshi
Yoshida, On ideal points of deformation curves of hyperbolic
3manifolds with one cusp, Topology 30 (1991),
no. 2, 155–170. MR 1098911
(92a:57018), http://dx.doi.org/10.1016/00409383(91)90003M
 1.
 Thomas Becker and Volker Weispfenning: Gröbner Bases: A Computational Approach to Commutative Algebra, SpringerVerlag, New York, 1993. MR 1213453 (95e:13018)
 2.
 Riccardo Benedetti and Carlo Petronio: Lectures on Hyperbolic Geometry. SpringerVerlag, Berlin, 1992. MR 1219310 (94e:57015)
 3.
 Benjamin A. Burton: Regina: Normal Surface and Manifold Topology Software, 19992009, http://regina.sourceforge.net/.
 4.
 HuaiDong Cao and XiPing Zhu: A complete proof of the Poincaré and geometrization conjecturesapplication of the HamiltonPerelman theory of the Ricci flow, Asian J. Math. 10 (2006), no. 2, 165492; Erratum, Asian J. Math. 10 (2006), no. 4, p. 663. MR 2233789 (2008d:53090); MR 2282358 (2008d:53091)
 5.
 David Coulson, Oliver A. Goodman, Craig D. Hodgson and Walter D. Neumann: Computing arithmetic invariants of manifolds, Experimental Mathematics 9 (2000), 127152. MR 1758805 (2001c:57014)
 6.
 David Cox, John Little and Donal O'Shea: Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Third edition. Springer, New York, 2007. MR 2290010 (2007h:13036)
 7.
 Nathan M. Dunfield: Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999), no. 3, 623657. MR 1695208 (2000d:57022)
 8.
 Stefano Francaviglia: Hyperbolic volume of representations of fundamental groups of cusped manifolds, IMRN, 2004, no. 9, 425459. MR 2040346 (2004m:57032)
 9.
 Stefano Francaviglia and Ben Klaff: Maximal volume representations are Fuchsian, Geom. Dedicata 117 (2006), 111124. MR 2231161 (2007d:51019)
 10.
 David Gabai, Robert Meyerhoff and Peter Milley: Minimum volume cusped hyperbolic threemanifolds, Journal of the American Mathematical Society 22 (4) (2009), 11571215. MR 2525782 (2011a:57031)
 11.
 William Jaco and Jeffrey Tollefson: Algorithms for the complete decomposition of a closed manifold, Illinois J. Math. 39 (1995), no. 3, 358406. MR 1339832 (97a:57014)
 12.
 Feng Luo: Continuity of the volume of simplices in classical geometry, Commun. Contemp. Math. 8 (2006), no. 3, 411431. MR 2230889 (2007f:52026)
 13.
 Feng Luo: Volume optimization, normal surfaces and Thurston's equation on triangulated manifolds, Preprint, arXiv:0903.1138v1.
 14.
 Feng Luo and Stephan Tillmann: Angle structures and normal surfaces, Trans. Amer. Math. Soc. 360 (2008), no. 6, 28492866. MR 2379778 (2009b:57046)
 15.
 Bruce Kleiner and John Lott: Notes on Perelman's papers, Geom. Topol. 12 (2008), 25872855. MR 2460872 (2010h:53098)
 16.
 Rüdiger Loos: Computing in Algebraic Extensions, from: ``Computer Algebra: Symbolic and Algebraic Computation'' (Bruno Buchberger, George Edwin Collins, Rüdiger Loos, Rudolf Albrecht, editors), SpringerVerlag, Vienna, 1983, 173188. MR 728972
 17.
 Jason Manning: Algorithmic detection and description of hyperbolic structures on closed
manifolds with solvable word problem, Geometry & Topology 6 (2002) 126. MR 1885587 (2002k:57043)
 18.
 Peter Milley: Minimum volume hyperbolic manifolds, Journal of Topology 2 (2009), no. 2, 181192. MR 2499442 (2010d:57018)
 19.
 John Milnor: Collected papers. Vol. 1. Geometry. Publish or Perish, Inc., Houston, TX, 1994. MR 1277810 (95c:01043)
 20.
 John Morgan and Gang Tian: Ricci flow and the Poincaré conjecture, AMS, Providence, 2007. MR 2334563 (2008d:57020)
 21.
 John Morgan and Gang Tian: Completion of the Proof of the Geometrization Conjecture, arXiv:0809.4040v1.
 22.
 Robert Penner: The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299339. MR 919235 (89h:32044)
 23.
 Grisha Perelman: The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159.
 24.
 Grisha Perelman: Finite extinction time for the solutions to the Ricci flow on certain threemanifolds, arXiv:math/0307245.
 25.
 Grisha Perelman: Ricci flow with surgery on threemanifolds, arXiv:math/0303109.
 26.
 John G. Ratcliffe: Foundations of hyperbolic manifolds. Second edition, Graduate Texts in Mathematics, 149. Springer, New York, 2006. MR 2249478 (2007d:57029)
 27.
 J. Hyam Rubinstein: An algorithm to recognise small Seifert fiber spaces, Turkish J. Math. 28 (2004), 7587. MR 2056761 (2005b:57042)
 28.
 Zlil Sela: The isomorphism problem for hyperbolic groups I, Annals of Mathematics (2) 141 (1995), 217283. MR 1324134 (96b:20049)
 29.
 William P. Thurston: Hyperbolic structures on manifolds I: Deformation of acylindrical manifolds, Annals of Mathematics (2) 124 (1986), no. 2, 203246. MR 855294 (88g:57014)
 30.
 William P. Thurston: The geometry and topology of manifolds, Princeton Univ. Math. Dept. (1978). Available from http://msri.org/publications/books/gt3m/.
 31.
 Tomoyoshi Yoshida: On ideal points of deformation curves of hyperbolic manifolds with one cusp, Topology 30 (1991), no. 2, 155170. MR 1098911 (92a:57018)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
57M25,
57N10
Retrieve articles in all journals
with MSC (2010):
57M25,
57N10
Additional Information
Feng Luo
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
Email:
fluo@math.rutgers.edu
Stephan Tillmann
Affiliation:
School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
Email:
tillmann@maths.uq.edu.au
Tian Yang
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
Email:
tianyang@math.rutgers.edu
DOI:
http://dx.doi.org/10.1090/S000299392012112201
PII:
S 00029939(2012)112201
Keywords:
Hyperbolic 3–manifold,
triangulation,
parameter space,
Thurston’s gluing equations
Received by editor(s):
October 2, 2010
Received by editor(s) in revised form:
April 8, 2011
Published electronically:
August 17, 2012
Additional Notes:
Research of the first and third authors was supported in part by the NSF
Research of the second author was partially funded by a UQ New Staff Research StartUp Fund and under the Australian Research Council’s Discovery funding scheme (DP1095760)
Communicated by:
Daniel Ruberman
Article copyright:
© Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
