Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


The conformal Yamabe constant of product manifolds

Authors: Bernd Ammann, Mattias Dahl and Emmanuel Humbert
Journal: Proc. Amer. Math. Soc. 141 (2013), 295-307
MSC (2010): Primary 35J60; Secondary 35P30, 58J50, 58C40
Published electronically: May 23, 2012
MathSciNet review: 2988731
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (V,g)$ and $ (W,h)$ be compact Riemannian manifolds of dimension at least $ 3$. We derive a lower bound for the conformal Yamabe constant of the product manifold $ ( V \times W, g+h)$ in terms of the conformal Yamabe constants of $ (V,g)$ and $ (W,h)$.

References [Enhancements On Off] (What's this?)

  • 1. K. Akutagawa, L. Florit, and J. Petean, On the Yamabe constant of Riemannian products, Comm. Anal. Geom. 15 (2007), 947-969. MR 2403191 (2009i:53030)
  • 2. B. Ammann, M. Dahl, and E. Humbert, Smooth Yamabe invariant and surgery, Preprint, arXiv 0804.1418, 2008.
  • 3. -, Low-dimensional surgery and the Yamabe invariant, Preprint in preparation, 2011.
  • 4. -, Square-integrability of solutions of the Yamabe equation, Preprint, arXiv:1111.2780, 2011.
  • 5. T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pure Appl., IX. Ser. 55 (1976), 269-296. MR 0431287 (55:4288)
  • 6. A. Benedek and R. Panzone, The space $ L^{p}$, with mixed norm, Duke Math. J. 28 (1961), 301-324. MR 0126155 (23:A3451)
  • 7. L. Bérard Bergery and G. Kaas, Examples of multiple solutions for the Yamabe problem on scalar curvature, Preprint,
  • 8. -, Remark on an example by R. Schoen concerning the scalar curvature, Preprint,
  • 9. C. Böhm, M. Wang, and W. Ziller, A variational approach for compact homogeneous Einstein manifolds, Geom. Funct. Anal. 14 (2004), 681-733. MR 2084976 (2005g:53074)
  • 10. L. L. de Lima, P. Piccione, and M. Zedda, A note on the uniqueness of solutions for the Yamabe problem, to appear in Proc. Amer. Math. Soc., 2011, arXiv:1102.2321.
  • 11. N. Große, The Yamabe equation on manifolds of bounded geometry, Preprint, 2009, arXiv:0912.4398.
  • 12. G. Henry and J. Petean, Isoparametric hypersurfaces and metrics of constant scalar curvature, Preprint, CIMAT Mexico, 2011.
  • 13. S. Kim, An obstruction to the conformal compactification of Riemannian manifolds, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1833-1838. MR 1646195 (2000j:53048)
  • 14. J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc., New Ser. 17 (1987), 37-91. MR 888880 (88f:53001)
  • 15. M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (1971/72), 247-258. MR 0303464 (46:2601)
  • 16. J. Petean, Best Sobolev constants and manifolds with positive scalar curvature metrics, Ann. Global Anal. Geom. 20 (2001), 231-242. MR 1866416 (2002h:53064)
  • 17. -, Isoperimetric regions in spherical cones and Yamabe constants of $ M\times S^1$, Geom. Dedicata 143 (2009), 37-48. MR 2576291 (2011b:53078)
  • 18. -, Metrics of constant scalar curvature conformal to Riemannian products, Proc. Amer. Math. Soc. 138 (2010), 2897-2905. MR 2644902
  • 19. J. Petean and J. M. Ruiz, Isoperimetric profile comparisons and Yamabe constants, Ann. Global Anal. Geom. 40 (2011), 177-189. MR 2811624
  • 20. -, On the Yamabe constants of $ {S}^2\times {R}^3$ and $ {S}^3\times {R}^2$, Preprint, arXiv:1202.1022, 2011.
  • 21. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,
    J. Diff. Geom. 20 (1984), 479-495. MR 788292 (86i:58137)
  • 22. -, On the number of constant scalar curvature metrics in a conformal class, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311-320. MR 1173050 (94e:53035)
  • 23. N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 265-274. MR 0240748 (39:2093)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J60, 35P30, 58J50, 58C40

Retrieve articles in all journals with MSC (2010): 35J60, 35P30, 58J50, 58C40

Additional Information

Bernd Ammann
Affiliation: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

Mattias Dahl
Affiliation: Institutionen för Matematik, Kungliga Tekniska Högskolan, 100 44 Stockholm, Sweden

Emmanuel Humbert
Affiliation: Institut Élie Cartan, BP 239, Université de Nancy 1, 54506 Vandoeuvre-lès-Nancy Cedex, France
Address at time of publication: Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Parc de Grandmot, 37200 Tours, France

Keywords: Yamabe constant, Yamabe invariant, product manifolds
Received by editor(s): March 9, 2011
Received by editor(s) in revised form: June 22, 2011
Published electronically: May 23, 2012
Additional Notes: The first author was partially supported by DFG Sachbeihilfe AM 144/2-1.
The second author was partially supported by the Swedish Research Council.
The third author was partially supported by ANR-10-BLAN 0105.
Communicated by: Michael Wolf
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society