Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Donaldson-Thomas invariants of threefold stacks and gerbes


Authors: Amin Gholampour and Hsian-Hua Tseng
Journal: Proc. Amer. Math. Soc. 141 (2013), 191-203
MSC (2010): Primary 14N35
DOI: https://doi.org/10.1090/S0002-9939-2012-11346-2
Published electronically: May 25, 2012
MathSciNet review: 2988722
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a construction of Donaldson-Thomas invariants for three-dimensional projective Calabi-Yau Deligne-Mumford stacks. We also study the structure of these invariants for étale gerbes over such stacks.


References [Enhancements On Off] (What's this?)

  • 1. D. Abramovich, T. Graber, and A. Vistoli.
    Algebraic orbifold quantum products.
    In: Adem, A.; Morava, J.; Ruan, Y. Orbifolds in mathematics and physics (Madison, WI, 2001), 1-24, Contemp. Math., 310, Amer. Math. Soc., 2002. MR 1950940 (2004c:14104)
  • 2. D. Abramovich, T. Graber, and A. Vistoli.
    Gromov-Witten theory of Deligne-Mumford stacks.
    Amer. J. Math., 130(5):1337-1398, 2008. MR 2450211 (2009k:14108)
  • 3. K. Behrend.
    Donaldson-Thomas type invariants via microlocal geometry.
    Ann. Math. (2), 170(3):1307-1338, 2009. MR 2600874 (2011d:14098)
  • 4. K. Behrend and B. Fantechi.
    The intrinsic normal cone.
    Invent. Math., 128(1):45-88, 1997. MR 1437495 (98e:14022)
  • 5. A. Caldararu.
    Derived categories of twisted sheaves on Calabi-Yau manifolds.
    Ph.D thesis, Cornell University, 2000. MR 2700538
  • 6. W. Chen and Y. Ruan.
    Orbifold Gromov-Witten theory.
    In: Adem, A.; Morava, J.; Ruan, Y. Orbifolds in mathematics and physics (Madison, WI, 2001), 25-85, Contemp. Math., 310, Amer. Math. Soc., 2002. MR 1950941 (2004k:53145)
  • 7. D. Edidin, B. Hassett, A. Kresch, and A. Vistoli.
    Brauer groups and quotient stacks.
    Amer. J. Math., 123(4):761-777, 2001. MR 1844577 (2002f:14002)
  • 8. S. Hellerman, A. Henriques, T. Pantev, E. Sharpe, and M. Ando.
    Cluster decomposition, $ T$-duality, and gerby CFTs.
    Adv. Theor. Math. Phys., 11(5):751-818, 2007. MR 2365496 (2008m:81168)
  • 9. L. Illusie.
    Complexe cotangent et déformations. I.
    Lecture Notes in Mathematics, Vol. 239. Springer-Verlag, Berlin, 1971. MR 0491680 (58:10886a)
  • 10. D. Joyce and Y. Song.
    A theory of generalized Donaldson-Thomas invariants.
    To appear in Mem. Amer. Math. Soc.,
    arXiv:0810.5645v4.
  • 11. A. Kresch.
    On the geometry of Deligne-Mumford stacks.
    In: Abramovich, D.; Bertram, A.; Katzarkov, L.; Pandharipande, R.; Thaddeus, M. Algebraic Geometry: Seattle 2005. Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009, 259-271. MR 2483938 (2011c:14006)
  • 12. M. Lieblich.
    Moduli of twisted sheaves.
    Duke Math. J., 138(1):23-118, 2007. MR 2309155 (2008d:14018)
  • 13. M. Lieblich.
    Twisted sheaves and the period-index problem.
    Compos. Math., 144(1):1-31, 2008. MR 2388554 (2009b:14033)
  • 14. D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande.
    Gromov-Witten theory and Donaldson-Thomas theory. I.
    Compos. Math., 142(5):1263-1285, 2006. MR 2264664 (2007i:14061)
  • 15. D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande.
    Gromov-Witten theory and Donaldson-Thomas theory. II.
    Compos. Math., 142(5):1286-1304, 2006. MR 2264665 (2007i:14062)
  • 16. F. Nironi.
    Grothendieck Duality for Projective Deligne-Mumford Stacks.
    arXiv:0811.1955.
  • 17. F. Nironi.
    Moduli Spaces of Semistable Sheaves on Projective Deligne-Mumford Stacks.
    arXiv:0811.1949v1.
  • 18. M. Olsson and J. Starr.
    Quot functors for Deligne-Mumford stacks.
    Comm. Algebra, 31(8):4069-4096, 2003. MR 2007396 (2004i:14002)
  • 19. X. Tang and H.-H. Tseng.
    Duality theorems of étale gerbes on orbifolds.
    arXiv:1004.1376.
  • 20. R. P. Thomas.
    A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $ K3$ fibrations.
    J. Differential Geom., 54(2):367-438, 2000. MR 1818182 (2002b:14049)
  • 21. R. P. Thomas and D. Huybrechts.
    Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes.
    Math. Ann., 346(3):545-569, 2010. MR 2578562 (2011b:14030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14N35

Retrieve articles in all journals with MSC (2010): 14N35


Additional Information

Amin Gholampour
Affiliation: Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
Address at time of publication: Department of Mathematics, University of Maryland, 1301 Mathematics Building, College Park, Maryland 20742-4015
Email: a.gholampour@imperial.ac.uk, amingh@umd.edu

Hsian-Hua Tseng
Affiliation: Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, Ohio 43210
Email: hhtseng@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11346-2
Received by editor(s): February 9, 2011
Received by editor(s) in revised form: May 12, 2011, June 1, 2011, and June 22, 2011
Published electronically: May 25, 2012
Communicated by: Lev Borisov
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society