Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Corrigendum to ``Multipliers and essential norm on the Drury-Arveson space''

Authors: Quanlei Fang and Jingbo Xia
Journal: Proc. Amer. Math. Soc. 141 (2013), 363-368
MSC (2010): Primary 47B10, 47B32, 47B38
Published electronically: May 23, 2012
Original Article: Proc. Amer. Math. Soc. 139 (2011), 2497-2504
MathSciNet review: 2988737
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an elementary proof of the ``one-function corona theorem'' for the multipliers of the Drury-Arveson space.

References [Enhancements On Off] (What's this?)

  • 1. N. Arcozzi, R. Rochberg and E. Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Advances in Math. 218 (2008), 1107-1180. MR 2419381 (2009j:46062)
  • 2. W. Arveson, Subalgebras of $ C^{\ast }$-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), 159-228. MR 1668582 (2000e:47013)
  • 3. W. Arveson, The curvature invariant of a Hilbert module over $ {\mathbf {C}}[z_{1}, \dots , z_{d}]$, J. Reine Angew. Math. 522 (2000), 173-236. MR 1758582 (2003a:47013)
  • 4. J. A. Ball and V. Bolotnikov, Interpolation problems for multipliers on the Drury-Arveson space: from Nevanlinna-Pick to Abstract Interpolation Problem, Integr. Equ. Oper. Theory 62 (2008), 301-349. MR 2461123 (2010a:47034)
  • 5. J. A. Ball, T. T. Trent and V. Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Op. Th. Adv. and App., 122, Birkhäuser, Basel, 2001, 89-138. MR 1846055 (2002f:47028)
  • 6. Z. Chen, Characterizations of Arveson's Hardy space, Complex Var. Theory Appl. 48 (2003), 453-465. MR 1974382 (2004c:32010)
  • 7. S. Costea, E. Sawyer and B. Wick, The Corona Theorem for the Drury-Arveson Hardy space and other holomorphic Besov-Sobolev spaces on the unit ball in $ {\mathbf {C}}^{n}$, Anal. PDE 4 (2011), 499-550.
  • 8. S. W. Drury, A generalization of von Neumann's inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), 300-304. MR 480362 (80c:47010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B10, 47B32, 47B38

Retrieve articles in all journals with MSC (2010): 47B10, 47B32, 47B38

Additional Information

Quanlei Fang
Affiliation: Department of Mathematics and Computer Science, Bronx Community College, CUNY, Bronx, New York 10453
Email: fangquanlei@com

Jingbo Xia
Affiliation: Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260

Keywords: Multiplier, Drury-Arveson space
Received by editor(s): June 19, 2011
Published electronically: May 23, 2012
Communicated by: Richard Rochberg
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society