Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates


Authors: Gabriel Acosta, Ricardo G. Durán and Fernando López García
Journal: Proc. Amer. Math. Soc. 141 (2013), 217-232
MSC (2010): Primary 26D10; Secondary 76D07
DOI: https://doi.org/10.1090/S0002-9939-2012-11408-X
Published electronically: May 22, 2012
MathSciNet review: 2988724
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Korn inequality and related results on solutions of the divergence in Sobolev spaces have been widely studied since the pioneering works by Korn and Friedrichs. In particular, it is known that this inequality is valid for Lipschitz domains as well as for the more general class of John domains. On the other hand, a few known counterexamples show that those results are not valid for certain bounded domains having external cusps.

The goal of this paper is to give very simple counterexamples for a class of cuspidal domains in $ \mathbb{R}^n$. Moreover, we show that these counterexamples can be used to prove the optimality of recently obtained results involving weighted Sobolev spaces.


References [Enhancements On Off] (What's this?)

  • [ADL] G. Acosta, R. Durán and A. Lombardi, Weighted Poincaré and Korn inequalities for Hölder $ \alpha $ domains, Math. Meth. Appl. Sci. (MMAS) 29 (4), pp. 387-400, 2006. MR 2198138 (2006i:26020)
  • [ADM] G. Acosta, R. G. Durán and M. A. Muschietti, Solutions of the divergence operator on John domains, Advances in Mathematics 206(2), pp. 373-401, 2006. MR 2263708 (2007k:35035)
  • [B] M. E. Bogovskii, Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Soviet Math. Dokl. 20, pp. 1094-1098, 1979. MR 553920 (82b:35135)
  • [BS] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, Berlin, 1994. MR 1278258 (95f:65001)
  • [C1] P. G. Ciarlet, Introduction to linear shell theory, Series in Applied Mathematics, P. G. Ciarlet and P. L. Lions, eds., Gauthier-Villars, 1998. MR 1648549 (99j:73071)
  • [DRS] L. Diening, M. Ružička and K. Schumacher, A decomposition technique for John domains, Annales Academiae Scientiarum Fennicae Ser. A I Math. 35, pp. 87-114, 2010. MR 2643399 (2011i:26020)
  • [Do] M. Dobrowolski, On the LBB condition in the numerical analysis of the Stokes equations, Appl. Numer. Math. 54, pp. 314-323, 2005. MR 2149355 (2006d:65132)
  • [D] R. G. Durán, The inf-sup condition for the Stokes equations: A constructive approach in general domains, Mathematisches Forschungsinstitut Oberwolfach, Workshop on
    Gemischte und nicht-standard Finite-Elemente-Methoden mit Anwendungen, Extended abstract 5, pp. 270-272, 2005.
  • [DMRT] R. G. Durán, M.-A. Muschietti, E. Russ, and P. Tchamitchian, Divergence operator and Poincaré inequalities on arbitrary bounded domains, Complex Variables and Elliptic Equations 55, pp. 795-816, 2010. MR 2674865 (2011e:35056)
  • [DL1] R. Durán and F. Lopez García, Solutions of the divergence and analysis of the Stokes equations in planar Hölder-$ \alpha $ domains, Math. Mod. Meth. Appl. Sci. 20(1), pp. 95-120, 2010. MR 2606245 (2011h:35219)
  • [DL2] R. Durán and F. Lopez García, Solutions of the divergence and Korn inequalities on domains with an external cusp, Annales Academiae Scientiarum Fennicae Ser. A I Math. 35, pp. 421-438, 2010. MR 2731700 (2011k:35180)
  • [F1] K. O. Friedrichs, On certain inequalities and characteristic value problems for analytic functions and for functions of two variables, Trans. Amer. Math. Soc., 41, pp. 321-364, 1937. MR 1501907
  • [F2] K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality, Ann. of Math. (2), 48, pp. 441-471, 1947. MR 0022750 (9:255b)
  • [GG] G. Geymonat and G. Gilardi, Contre-exemples à l'inégalité de Korn et au Lemme de Lions dans des domaines irréguliers, Equations aux Dérivées Partielles et Applications, Gauthiers-Villars, pp. 541-548, 1998. MR 1648239 (99i:73017)
  • [H] C. O. Horgan, Korn's inequalities and their applications in continuum mechanics, SIAM Review, 37, pp. 491-511, 1995. MR 1368384 (96h:73014)
  • [HP] C. O. Horgan and L. E. Payne, On inequalities of Korn, Friedrichs and Babuska-Aziz, Arch. Rational Mech. Anal. 82, pp. 165-179, 1983. MR 687553 (84d:73014)
  • [K1] A. Korn, Die Eigenschwingungen eines elastischen Korpers mit ruhender Oberflache, Akad. der Wissensch Munich, Math-phys. Kl, Beritche, 36, pp. 351-401, 1906.
  • [K2] A. Korn, Ubereinige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bulletin Internationale, Cracovie Akademie Umiejet, Classe de sciences mathématiques et naturelles, pp. 705-724, 1909.
  • [W] N. Weck, Local compactness for elasticity in irregular domains, Math. Meth. in Appl. Sci. 17, pp. 107-113, 1994. MR 1258259 (95a:46056)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26D10, 76D07

Retrieve articles in all journals with MSC (2010): 26D10, 76D07


Additional Information

Gabriel Acosta
Affiliation: Departamento de Matemática and IMAS, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Email: gacosta@dm.uba.ar

Ricardo G. Durán
Affiliation: Departamento de Matemática and IMAS, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Email: rduran@dm.uba.ar

Fernando López García
Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Address at time of publication: Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280
Email: flopezg@dm.uba.ar, flopezgarcia@wpi.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11408-X
Keywords: Korn inequality, divergence operator, bad domains
Received by editor(s): June 18, 2010
Published electronically: May 22, 2012
Additional Notes: This research was supported by ANPCyT under grants PICT 2006-01307 and 2007-910, by Universidad de Buenos Aires under grant X070, and by CONICET under grant PIP 11220090100625. The first and second authors are members of CONICET, Argentina
Communicated by: Walter Craig
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society