Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Fixed point property for universal lattice on Schatten classes


Author: Masato Mimura
Journal: Proc. Amer. Math. Soc. 141 (2013), 65-81
MSC (2010): Primary 20F65, 20J06; Secondary 20H25, 22D12
DOI: https://doi.org/10.1090/S0002-9939-2012-11711-3
Published electronically: May 7, 2012
MathSciNet review: 2988711
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The special linear group $ G=\mathrm {SL}_n (\mathbb{Z}[x_1, \ldots , x_k])$ ($ n$ at least $ 3$ and $ k$ finite) is called the universal lattice. Let $ n$ be at least $ 4$, and $ p$ be any real number in $ (1, \infty )$. The main result is the following: any finite index subgroup of $ G$ has the fixed point property with respect to every affine isometric action on the space of $ p$-Schatten class operators. It is in addition shown that higher rank lattices have the same property. These results are a generalization of previous theorems respectively of the author and of Bader-Furman-Gelander-Monod, which treated a commutative $ L^p$-setting.


References [Enhancements On Off] (What's this?)

  • [AK] A.G. Aksoy and M.A. Khamsi, Nonstandard Methods in Fixed Point Theory. Springer-Verlag, New York, 1990. MR 1066202 (91i:47073)
  • [Ar] J. Arazy, The isometries of $ C_p$. Israel J. Math. 22 (1975), 247-256. MR 0512953 (58:23760)
  • [BFGM] U. Bader, A. Furman, T. Gelander, and N. Monod, Property (T) and rigidity for actions on Banach spaces. Acta Math. 198 (2007), no. 1, 57-105. MR 2316269 (2008g:22007)
  • [BHV] B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's property (T). New Mathematical Monographs, Vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834 (2009i:22001)
  • [BL] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, Amer. Math. Soc., Providence, RI, 2000. MR 1727673 (2001b:46001)
  • [BP] M. Bourdon and H. Pajot, Cohomologie $ l_p$ et espaces de Besov. J. reine angew. Math. 558 (2003), 85-108. MR 1979183 (2004e:20073)
  • [BM1] M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups.
    J. Eur. Math. Soc. 1 (1999), no. 2, 199-235. MR 1694584 (2000g:57058a)
  • [BM2] M. Burger and N. Monod, Continuous bounded cohomology and application to rigidity theory. Geom. Funct. Anal. 12(2) (2002), 219-280. MR 1911660 (2003d:53065a)
  • [Co] P. M. Cohn, On the structure of the $ GL_2$ of a ring. Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5-53. MR 0207856 (34:7670)
  • [FP] T. Figiel and G. Pisier, Séries aléatories dans les espaces uniformément convexes ou uniformément lisses. C. R. Acad. Sci. Paris Sér. A 279 (1974), 611-614. MR 0358295 (50:10761)
  • [FJ] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces. Chapman & Hall/CRC, Boca Raton, 2003. MR 1957004 (2004j:46030)
  • [Gr] M. Gromov, Random walks in random groups. Geom. Funct. Anal. 13 (2003), 73-148. MR 1978492 (2004j:20088a)
  • [He] S. Heinrich, Ultraproduct in Banach space theory. J. reine angew. Math. 313 (1980), 72-104. MR 552464 (82b:46013)
  • [HLS] N. Higson, V. Lafforgue, and G. Skandalis, Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal. 12 (2002), 330-354. MR 1911663 (2003g:19007)
  • [JRS] M. Junge, Z.-J. Ruan, and D. Sherman, A classification for $ 2$-isometries of noncommutative $ L_p$-spaces. Isr. J. Math. 150 (2005), 285-314. MR 2255812 (2008d:46084)
  • [KY] G. Kasparov and G. Yu, The coarse geometric Novikov conjecture and uniform convexity. Adv. Math. 206 (2006), no. 1, 1-56. MR 2261750 (2007g:58025)
  • [Ka] D. A. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl. 1 (1967), 63-65. MR 0209390 (35:288)
  • [Ko] H. Kosaki, On the convexity of the map $ \phi \to \vert\phi \vert$ from the predual of a $ W^*$-algebra.
    J. Funct. Anal. 59 (1984), 123-131. MR 763779 (86c:46072)
  • [La1] V. Lafforgue, Un renforcement de la propriété (T). Duke Math. J. 143 (2008), 559-602. MR 2423763 (2009f:22004)
  • [La2] V. Lafforgue, Propriété (T) renforcée banachique et transformation de Fourier rapide. J. Topol. Anal. 1 (2009), no. 3, 191-206. MR 2574023 (2010m:22004)
  • [LMR] A. Lubotzky, S. Mozes, and M. S. Raghunathan, The word and Riemannian metrics on lattices of semisimple groups. Inst. Hautes Études Sci. Publ. Math. 91 (2000), 5-53. MR 1828742 (2002e:22011)
  • [Mi] M. Mimura, Fixed-point properties and second bounded cohomology of universal lattices on Banach spaces. J.reine angew. Math. 653 (2011), 115-134. MR 2794627
  • [Mo] N. Monod, Continuous bounded cohomology of locally compact groups. Springer Lecture Notes in Mathematics, 1758, 2001. MR 1840942 (2002h:46121)
  • [MMS] I. Mineyev, N. Monod, and Y. Shalom, Ideal bicombings for hyperbolic groups and applications. Topology 43 (2004), no. 6, 1319-1344. MR 2081428 (2005i:20067)
  • [Na] A. Navas, Reduction of cocycles and groups of diffeomorphisms of the circle. Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 193-205. MR 2259900 (2007g:37030)
  • [Ol] B. Olivier, Kazhdan's property $ (T)$ with respect to non-commutative $ L_p$-spaces. Preprint, arXiv:1107.1394, to appear in Proc. Amer. Math. Soc.
  • [Pa] P. Pansu, Cohomologie $ L^p$: invariance sous quasiisométrie, preprint, 1995.
  • [PX] G. Pisier and Q. Xu, Non-commutative $ L^p$-spaces. In Handbook of the geometry of Banach spaces, Vol. 2, 1459-1517. North-Holland, Amsterdam, 2003. MR 1999201 (2004i:46095)
  • [Pu] M. Puschnigg, Finitely summable Fredholm modules over higher rank groups and lattices. J. $ K$-Theory 8 (2011), no. 2, 223-239. MR 2842930
  • [Ra] Y. Raynaud, On ultrapowers of non commutative $ L_p$ spaces. J. Operator Theory 48 (2002), no. 1, 41-68. MR 1926043 (2003i:46069)
  • [Sha1] Y. Shalom, Bounded generation and Kazhdan's property (T). Inst. Hautes Études Sci. Publ. Math. 90 (1999), 145-168. MR 1813225 (2001m:22030)
  • [Sha2] Y. Shalom, Rigidity of commensurators and irreducible lattices. Invent. Math. 141(1) (2000), 1-54. MR 1767270 (2001k:22022)
  • [Sha3] Y. Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Ann. of Math. (2) 152 (2000), 113-182. MR 1792293 (2001m:22022)
  • [Sha4] Y. Shalom, The algebraization of Kazhdan's property (T). International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich (2006), 1283-1310. MR 2275645 (2008a:22003)
  • [She] D. Sherman, Noncommutative $ L^p$-structure encodes exactly Jordan structure. J. Funct. Anal. 221 (2005), 150-166. MR 2124900 (2006c:46051)
  • [St] E. Størmer, On the Jordan structure of C$ ^{*}$-algebras. Trans. Amer. Math. Soc. 120 (1965), 438-447. MR 0185463 (32:2930)
  • [Su] A. A. Suslin, On the structure of the special linear group over polynomial rings. Math. USSR Izv. 11 (1977), 221-238. MR 0472792 (57:12482)
  • [Va] L. Vaserstein, Bounded reduction of invertible matrices over polynomial ring by addition operators, preprint, 2007.
  • [Ye] F. J. Yeadon, Isometries of non-commutative $ L^p$ spaces. Math. Proc. Camb. Phil. Soc. 90 (1981), 41-50. MR 611284 (82g:46108)
  • [Yu] G. Yu, Hyperbolic groups admit proper affine isometric actions on $ {\ell }^p$-spaces. Geom. Funct. Anal. 15 (2005), 1144-1151. MR 2221161 (2007f:20075)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20F65, 20J06, 20H25, 22D12

Retrieve articles in all journals with MSC (2010): 20F65, 20J06, 20H25, 22D12


Additional Information

Masato Mimura
Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo, 153-8914, Japan – and – École Polytechnique Fédérale de Lausanne, SB–IMB–EGG, Station 8, Bâtiment MA, Lausanne, Vaud, CH-1015, Switzerland
Address at time of publication: Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo, 153-8914, Japan – and – Institut de Mathématiques, Faculté des Sciences, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
Email: mimurac@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2012-11711-3
Keywords: Fixed point property, Kazhdan’s property (T), Schatten class operators, noncommutative $L^{p}$-spaces, bounded cohomology
Received by editor(s): October 22, 2010
Received by editor(s) in revised form: June 7, 2011
Published electronically: May 7, 2012
Additional Notes: The author is supported by JSPS Research Fellowships for Young Scientists No. 20-8313.
Communicated by: Marius Junge
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society