Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Extremal ergodic measures and the finiteness property of matrix semigroups


Authors: Xiongping Dai, Yu Huang and MingQing Xiao
Journal: Proc. Amer. Math. Soc. 141 (2013), 393-401
MSC (2010): Primary 15B52; Secondary 15A30, 15A18
DOI: https://doi.org/10.1090/S0002-9939-2012-11330-9
Published electronically: June 1, 2012
MathSciNet review: 2996944
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\boldsymbol {S}}=\{S_1,\ldots ,S_K\}$ be a finite set of complex $ d\times d$ matrices and $ \varSigma _{\!K}^+$ be the compact space of all one-sided infinite sequences $ i_{\boldsymbol {\cdot }}\colon \mathbb{N}\rightarrow \{1,\dotsc ,K\}$. An ergodic probability $ \mu _*$ of the Markov shift $ \theta \colon \varSigma _{\!K}^+\rightarrow \varSigma _{\!K}^+;\ i_{\boldsymbol {\cdot }}\mapsto i_{\boldsymbol {\cdot }+1}$, is called ``extremal'' for $ {\boldsymbol {S}}$ if $ {\rho }({\boldsymbol {S}})=\lim _{n\to \infty }\sqrt [n]{\left \Vert S_{i_1}\cdots S_{i_n}\right \Vert}$ holds for $ \mu _*$-a.e. $ i_{\boldsymbol {\cdot }}\in \varSigma _{\!K}^+$, where $ \rho ({\boldsymbol {S}})$ denotes the generalized/joint spectral radius of $ {\boldsymbol {S}}$. Using the extremal norm and the Kingman subadditive ergodic theorem, it is shown that $ {\boldsymbol {S}}$ has the spectral finiteness property (i.e. $ \rho ({\boldsymbol {S}})=\sqrt [n]{\rho (S_{i_1}\cdots S_{i_n})}$ for some finite-length word $ (i_1,\ldots ,i_n)$) if and only if for some extremal measure $ \mu _*$ of $ {\boldsymbol {S}}$, it has at least one periodic density point $ i_{\boldsymbol {\cdot }}\in \varSigma _{\!K}^+$.


References [Enhancements On Off] (What's this?)

  • 1.
    N. BARABANOV,
    Lyapunov exponents of discrete inclusions I-III,
    Autom. Remote Control, 49 (1988), 152-157, 283-287, 558-565. MR 0940263 (89e:34025); MR 0943889 (89e:34026); MR 0952665 (89m:34060)
  • 2.
    M.A. BERGER AND Y. WANG,
    Bounded semigroups of matrices,
    Linear Algebra Appl., 166 (1992), 21-27. MR 1152485 (92m:15012)
  • 3.
    V.D. BLONDEL, J. THEYS AND A.A. VLADIMIROV,
    An elementary counterexample to the finiteness conjecture,
    SIAM J. Matrix Anal. Appl., 24 (2003), 963-970. MR 2003315 (2004g:15010)
  • 4.
    T. BOUSCH AND J. MAIRESSE,
    Asymptotic height optimization for topical IFS, Tetris heaps and the finiteness conjecture,
    J. Amer. Math. Soc., 15 (2002), 77-111. MR 1862798 (2002j:49008)
  • 5.
    X. DAI,
    Weakly Birkhoff recurrent switching signals, almost sure and partial stability of linear switched dynamical systems,
    J. Differential Equations, 250 (2011), 3584-3629. MR 2773179
  • 6.
    X. DAI,
    Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices,
    J. Math. Anal. Appl., 379 (2011), 827-833. MR 2784362
  • 7.
    X. DAI, Y. HUANG AND M. XIAO,
    Almost sure stability of discrete-time switched linear systems: A topological point of view,
    SIAM J. Control Optim., 47 (2008), 2137-2156. MR 2421343 (2009i:93134)
  • 8.
    X. DAI, Y. HUANG AND M. XIAO,
    Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities,
    Automatica, 47 (2011), 1512-1519.
  • 9.
    X. DAI, Y. HUANG AND M. XIAO,
    Realization of joint spectral radius via ergodic theory,
    Electron. Res. Announc. Math. Sci., 18 (2011), 22-30. MR 2817401
  • 10.
    X. DAI AND V. KOZYAKIN,
    Finiteness property of a bounded set of matrices with uniformly sub-peripheral spectrum,
    Information Processes, 11 (2011), 253-261 (Russian).
    English version in J. Commun. Technology and Electronics, 56 (2011), 1564-1569.
  • 11.
    I. DAUBECHIES AND J.C. LAGARIAS,
    Sets of matrices all infinite products of which converge,
    Linear Algebra Appl., 161 (1992), 227-263. Corrigendum/addendum 327 (2001), 69-83. MR 1142737 (93f:15006); MR 1823340 (2002b:15010)
  • 12.
    L. ELSNER,
    The generalized spectral-radius theorem: An analytic-geometric proof,
    Linear Algebra Appl., 220 (1995), 151-159. MR 1334574 (96e:15010)
  • 13.
    H. FURSTENBERG AND H. KESTEN,
    Products of random matrices,
    Ann. Math. Statist., 31 (1960), 457-469. MR 0121828 (22:12558)
  • 14.
    K.G. HARE, I.D. MORRIS, N. SIDOROV AND J. THEYS,
    An explicit counterexample to the Lagrarias-Wang finiteness conjecture,
    Adv. Math., 226 (2011), 4667-4701. MR 2775881
  • 15.
    J.F.C. KINGMAN,
    Subadditive ergodic theory,
    Ann. Probab., 1 (1973), 883-909. MR 0356192 (50:8663)
  • 16.
    V.S. KOZYAKIN,
    Structure of extremal trajectories of discrete linear systems and the finiteness conjecture,
    Automat. Remote Control, 68 (2007), 174-209.
  • 17.
    V.V. NEMYTSKII AND V.V. STEPANOV,
    Qualitative Theory of Differential Equations,
    Princeton University Press, Princeton, New Jersey, 1960. MR 0121520 (22:12258)
  • 18.
    G.-C. ROTA AND G. STRANG,
    A note on the joint spectral radius,
    Indag. Math., 22 (1960), 379-381. MR 0147922 (26:5434)
  • 19.
    M.-H. SHIH, J.-W. WU AND C.-T. PANG,
    Asymptotic stability and generalized Gelfand spectral radius formula,
    Linear Algebra Appl., 252 (1997), 61-70. MR 1428628 (97k:15028)
  • 20.
    P. WALTERS,
    An Introduction to Ergodic Theory,
    Graduate Texts in Math., 79, Springer-Verlag, New York, 1982. MR 648108 (84e:28017)
  • 21.
    F. WIRTH,
    The generalized spectral radius and extremal norms,
    Linear Algebra Appl., 342 (2002), 17-40. MR 1873424 (2003g:15025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15B52, 15A30, 15A18

Retrieve articles in all journals with MSC (2010): 15B52, 15A30, 15A18


Additional Information

Xiongping Dai
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email: xpdai@nju.edu.cn

Yu Huang
Affiliation: Department of Mathematics, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, People’s Republic of China
Email: stshyu@mail.sysu.edu.cn

MingQing Xiao
Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901-4408
Email: mxiao@math.siu.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11330-9
Keywords: The finiteness property, joint/generalized spectral radius, extremal probability, random product of matrices
Received by editor(s): June 10, 2011
Received by editor(s) in revised form: June 16, 2011, and June 27, 2011
Published electronically: June 1, 2012
Additional Notes: This project was supported partly by National Natural Science Foundation of China (Nos. 11071112 and 11071263) and in part by NSF DMS-0605181, 1021203, of the United States.
Communicated by: Bryna Kra
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society