Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


On mean values of random multiplicative functions

Authors: Yuk-Kam Lau, Gérald Tenenbaum and Jie Wu
Journal: Proc. Amer. Math. Soc. 141 (2013), 409-420
MSC (2010): Primary 11N37; Secondary 11K99, 60F15
Published electronically: June 14, 2012
MathSciNet review: 2996946
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathscr P$ denote the set of primes and $ \{f(p)\}_{p\in \mathscr P}$ be a sequence of independent Bernoulli random variables taking values $ \pm 1$ with probability $ 1/2$. Extending $ f$ by multiplicativity to a random multiplicative function $ f$ supported on the set of squarefree integers, we prove that, for any $ \varepsilon >0$, the estimate $ \sum _{n\leqslant x}f(n)\ll \sqrt {x}\,(\log \log x)^{3/2+\varepsilon }$ holds almost surely, thus qualitatively matching the law of the iterated logarithm, valid for independent variables. This improves on corresponding results by Wintner, Erdős and Halász.

References [Enhancements On Off] (What's this?)

  • 1. J. Basquin, Sommes friables de fonctions multiplicatives aléatoires, Acta Arith., to appear.
  • 2. A. Bonami, Étude des coefficients de Fourier des fonctions de $ L^p(G)$, Ann. Inst. Fourier, Grenoble 20, 2 (1970), 335-402. MR 0283496 (44:727)
  • 3. S. Chatterjee and K. Soundararajan, Random multiplicative functions in short intervals, Int. Math. Res. Notices 2012, No. 3, 479-492.
  • 4. K.L. Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York/
    Chicago/San Francisco/Atlanta, 1968. MR 0229268 (37:4842)
  • 5. P. Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kut. Int. Közl. 6 (1961), 211-254. MR 0177846 (31:2106)
  • 6. A. Granville and K. Soundararajan, The distribution of values of $ L(1,\chi \sb d)$, Geom. Funct. Anal. 13 (2003), no. 5, 992-1028. MR 2024414 (2005d:11129)
  • 7. G. Halász, On random multiplicative functions, Publ. Math. Orsay, 83-4 (1983), 74-96. MR 728404 (85i:11081)
  • 8. A.J. Harper, Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function, preprint, arXiv:1012.0210.
  • 9. N.M. Katz and P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, 45. American Mathematical Society, Providence, RI, 1999. MR 1659828 (2000b:11070)
  • 10. P. Lévy, Sur les séries dont les termes sont des variables eventuelles indépendantes, Studia Math. 3 (1931), 119-155.
  • 11. H.L. Montgomery, The pair correlation of zeros of the zeta function, in: Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 181-193, Amer. Math. Soc., Providence, RI, 1973. MR 0337821 (49:2590)
  • 12. H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS 84, AMS, Providence, RI, 1994. MR 1297543 (96i:11002)
  • 13. D. Revuz and M. Yor, Continuous martingales and Brownian motion (Third ed.), Grundlehren der Mathematischen Wissenschaften 293, Springer-Verlag, Berlin, 1999. MR 1725357 (2000h:60050)
  • 14. A.N. Shiryaev, Probability, Second edition, Graduate Texts in Mathematics 95, Springer-Verlag, New York, 1996. MR 1368405 (97c:60003)
  • 15. K. Soundararajan, Partial sums of the Möbius function, J. reine angew. Math. 631 (2009), 141-152. MR 2542220 (2010e:11090)
  • 16. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Coll. Échelles, Berlin, 2008.
  • 17. A. Wintner, Random factorizations and Riemann's hypothesis, Duke Math. J. 11 (1944), 267-275. MR 0010160 (5:255c)
  • 18. J. Wu, Note on a paper by Granville and Soundararajan, J. Number Theory 123 (2007), 329-351. MR 2300818 (2008f:11096)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11N37, 11K99, 60F15

Retrieve articles in all journals with MSC (2010): 11N37, 11K99, 60F15

Additional Information

Yuk-Kam Lau
Affiliation: Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

Gérald Tenenbaum
Affiliation: Institut Élie Cartan Nancy, Nancy-Université, CNRS & INRIA, 54506 Vandœuvre-lès-Nancy, France

Jie Wu
Affiliation: Institut Élie Cartan Nancy, Nancy-Université, CNRS & INRIA, 54506 Vandœuvre-lès-Nancy, France

Keywords: Random multiplicative functions, law of iterated logarithm, Riemann hypothesis, Möbius function, mean values of multiplicative functions, Rademacher functions.
Received by editor(s): December 4, 2010
Received by editor(s) in revised form: December 5, 2010, and June 30, 2011
Published electronically: June 14, 2012
Communicated by: Richard C. Bradley
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society