Curves of genus whose canonical model lies on a surface of degree

Author:
Gianfranco Casnati

Journal:
Proc. Amer. Math. Soc. **141** (2013), 437-450

MSC (2010):
Primary 14N25; Secondary 14H51, 14H30, 14N05

Published electronically:
June 12, 2012

MathSciNet review:
2996948

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a non-hyperelliptic curve of genus . We prove that if the minimal degree of a surface containing the canonical model of in is , then either and carries exactly one or and is birationally isomorphic to a plane septic curve with at most double points as singularities.

**[A-C-G-H]**E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris,*Geometry of algebraic curves. Vol. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR**770932****[B-C-F]**Edoardo Ballico, Gianfranco Casnati, and Claudio Fontanari,*On the geometry of bihyperelliptic curves*, J. Korean Math. Soc.**44**(2007), no. 6, 1339–1350. MR**2358958**, 10.4134/JKMS.2007.44.6.1339**[B-C-N]**E. Ballico, G. Casnati, and R. Notari,*Canonical curves with low apolarity*, J. Algebra**332**(2011), 229–243. MR**2774686**, 10.1016/j.jalgebra.2010.12.030**[Br]**James N. Brawner,*Tetragonal curves, scrolls, and 𝐾3 surfaces*, Trans. Amer. Math. Soc.**349**(1997), no. 8, 3075–3091. MR**1401515**, 10.1090/S0002-9947-97-01811-4**[Cs]**G. Casnati,*Canonical curves on surfaces of very low degree*, Proc. Amer. Math. Soc.**140**(2012), 1185-1197.**[C-E]**G. Casnati and T. Ekedahl,*Covers of algebraic varieties. I. A general structure theorem, covers of degree 3,4 and Enriques surfaces*, J. Algebraic Geom.**5**(1996), no. 3, 439–460. MR**1382731****[Ch]**Gabriela Chaves,*Revêtements ramifiés de la droite projective complexe*, Math. Z.**226**(1997), no. 1, 67–84 (French). MR**1472141**, 10.1007/PL00004334**[C-H]**C. Ciliberto and J. Harris,*Surfaces of low degree containing a general canonical curve*, Comm. Algebra**27**(1999), no. 3, 1127–1140. MR**1669124**, 10.1080/00927879908826485**[C-K1]**Marc Coppens and Takao Kato,*The gonality of smooth curves with plane models*, Manuscripta Math.**70**(1990), no. 1, 5–25. MR**1080899**, 10.1007/BF02568358**[C-K2]**Marc Coppens and Takao Kato,*Correction to: “The gonality of smooth curves with plane models”*, Manuscripta Math.**71**(1991), no. 3, 337–338. MR**1103738**, 10.1007/BF02568410**[Co]**I. Coşkun,*Surfaces of low degree containing a canonical curve*. To appear in Contemp. Math.**[De]**M. Demazure,*Surfaces de Del Pezzo - II, III, IV, V*, Séminaire sur les singularités des surfaces, Palaiseau, France 1976-1977 (M. Demazure, H. Pinkham, B. Teissier, eds.), Lecture Notes in Math. 777, Springer, 1980.**[Ha]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[Mi]**Juan C. Migliore,*Introduction to liaison theory and deficiency modules*, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR**1712469****[O-S]**Masahito Ohkouchi and Fumio Sakai,*The gonality of singular plane curves*, Tokyo J. Math.**27**(2004), no. 1, 137–147. MR**2060080**, 10.3836/tjm/1244208480**[SD]**B. Saint-Donat,*On Petri’s analysis of the linear system of quadrics through a canonical curve*, Math. Ann.**206**(1973), 157–175. MR**0337983****[Sch1]**Frank-Olaf Schreyer,*Syzygies of canonical curves and special linear series*, Math. Ann.**275**(1986), no. 1, 105–137. MR**849058**, 10.1007/BF01458587**[Sch2]**Frank-Olaf Schreyer,*A standard basis approach to syzygies of canonical curves*, J. Reine Angew. Math.**421**(1991), 83–123. MR**1129577**, 10.1515/crll.1991.421.83**[Za]**Oscar Zariski,*A simplified proof for the resolution of singularities of an algebraic surface*, Ann. of Math. (2)**43**(1942), 583–593. MR**0006851**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
14N25,
14H51,
14H30,
14N05

Retrieve articles in all journals with MSC (2010): 14N25, 14H51, 14H30, 14N05

Additional Information

**Gianfranco Casnati**

Affiliation:
Dipartimento di Matematica, Politecnico di Torino, c. so Duca degli Abruzzi 24, 10129 Torino, Italy

Email:
casnati@calvino.polito.it

DOI:
https://doi.org/10.1090/S0002-9939-2012-11335-8

Keywords:
Curve,
canonical model,
tetragonality.

Received by editor(s):
March 21, 2011

Received by editor(s) in revised form:
July 1, 2011

Published electronically:
June 12, 2012

Additional Notes:
This work was done in the framework of PRIN ‘Geometria delle varietà algebriche e dei loro spazi di moduli’, cofinanced by MIUR (COFIN 2008)

Communicated by:
Lev Borisov

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.