Linear independence for the system of integer translates of a square integrable function
Author:
Sandra Saliani
Journal:
Proc. Amer. Math. Soc. 141 (2013), 937941
MSC (2010):
Primary 42C40; Secondary 42A20
Published electronically:
July 17, 2012
MathSciNet review:
3003686
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove that if the system of integer translates of a square integrable function is linear independent, then its periodization function is strictly positive almost everywhere. Indeed we show that the above inference holds for any square integrable function since the following statement on Fourier analysis is true: For any (Lebesgue) measurable subset of , with positive measure, there exists a nontrivial square summable function, with support in whose partial sums of Fourier series are uniformly bounded in the uniform norm. This answers a question posed by Guido Weiss.
 1.
Eugenio
Hernández, Hrvoje
Šikić, Guido
Weiss, and Edward
Wilson, On the properties of the integer translates of a square
integrable function, Harmonic analysis and partial differential
equations, Contemp. Math., vol. 505, Amer. Math. Soc., Providence,
RI, 2010, pp. 233–249. MR 2664571
(2011g:42077), 10.1090/conm/505/09926
 2.
S.
V. Kisliakov, A sharp correction theorem, Studia Math.
113 (1995), no. 2, 177–196. MR 1318423
(96j:42005)
 3.
Morten
Nielsen and Hrvoje
Šikić, Schauder bases of integer translates,
Appl. Comput. Harmon. Anal. 23 (2007), no. 2,
259–262. MR 2344615
(2008k:42113), 10.1016/j.acha.2007.04.002
 4.
Maciej
Paluszyński, A note on integer translates of a square
integrable function on ℝ, Colloq. Math. 118
(2010), no. 2, 593–597. MR 2602169
(2011e:42077), 10.4064/cm118215
 5.
H. Šikić and D. Speegle, Dyadic PFW's and bases. In: G. Muić (ed.), Functional analysis IX, Univ. Aarhus, Aarhus (2007), 8590.
 6.
S.
A. Vinogradov, A strengthening of Kolmogorov’s theorem on the
conjugate function and interpolational properties of uniformly converging
power series, Trudy Mat. Inst. Steklov. 155 (1981),
7–40, 183 (Russian). Spectral theory of functions and operators, II.
MR 615564
(83b:42024)
 1.
 E. Hernández, H. Šikić, G. Weiss, and E. Wilson, On the properties of the integer translates of a square integrable function. Harmonic analysis and partial differential equations, Contemp. Math. 505, Amer. Math. Soc. (2010), 233249. MR 2664571 (2011g:42077)
 2.
 S. V. Kislyakov, A sharp correction theorem. Studia Math. 113 (2) (1995), 177196. MR 1318423 (96j:42005)
 3.
 M. Nielsen and H. Šikić, Schauder bases of integer translates. Appl. Comput. Harmon. Anal. 23 (2) (2007), 259262. MR 2344615 (2008k:42113)
 4.
 M. Paluszyński, A note on integer translates of a square integrable function on . Colloq. Math. 118 (2) (2010), 593597. MR 2602169 (2011e:42077)
 5.
 H. Šikić and D. Speegle, Dyadic PFW's and bases. In: G. Muić (ed.), Functional analysis IX, Univ. Aarhus, Aarhus (2007), 8590.
 6.
 S. A. Vinogradov, A strengthened form of Kolmogorov's theorem on the conjugate function and interpolation properties of uniformly convergent power series. In: Spectral theory of functions and operators. II. A translation of Trudy Mat. Inst. Steklov. 155 (1981), 740; Proc. Steklov Inst. Math., no. 1, Amer. Math. Soc., Providence, RI, 1983, 337. MR 615564 (83b:42024)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
42C40,
42A20
Retrieve articles in all journals
with MSC (2010):
42C40,
42A20
Additional Information
Sandra Saliani
Affiliation:
Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata, 85100 Potenza, Italia
Email:
sandra.saliani@unibas.it
DOI:
http://dx.doi.org/10.1090/S000299392012113784
Received by editor(s):
December 14, 2010
Received by editor(s) in revised form:
July 20, 2011
Published electronically:
July 17, 2012
Communicated by:
Michael T. Lacey
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
