Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Borel sets belonging to every invariant ccc $ \sigma$-ideal on $ 2^{\mathbb{N}}$


Author: Piotr Zakrzewski
Journal: Proc. Amer. Math. Soc. 141 (2013), 1055-1065
MSC (2000): Primary 03E15, 03E05; Secondary 54H05, 28C10
DOI: https://doi.org/10.1090/S0002-9939-2012-11384-X
Published electronically: August 3, 2012
MathSciNet review: 3003696
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ I_{ccc}$ be the $ \sigma $-ideal of subsets of the Cantor group $ 2^{\mathbb{N}}$ generated by Borel sets which belong to every translation-invariant $ \sigma $-ideal on $ 2^{\mathbb{N}}$ satisfying the countable chain condition (ccc). We prove that $ I_{ccc}$ strongly violates ccc. This generalizes a theorem of Balcerzak-Rosłanowski-Shelah stating the same for the $ \sigma $-ideal on $ 2^{\mathbb{N}}$ generated by Borel sets $ B\subseteq 2^{\mathbb{N}}$ which have perfectly many pairwise disjoint translates. We show that the last condition does not follow from $ B\in I_{ccc}$ even if $ B$ is assumed to be compact. Various other conditions which for a Borel set $ B$ imply that $ B\in I_{ccc}$ are also studied. As a consequence we prove in particular that:

  • If $ A_n$ are Borel sets, $ n\in \mathbb{N}$, and $ 2^{\mathbb{N}}=\bigcup _n A_n$, then there is $ n_0$ such that every perfect set $ P\subseteq 2^{\mathbb{N}}$ has a perfect subset $ Q$, a translate of which is contained in $ A_{n_0}$.

  • CH is equivalent to the statement that $ 2^{\mathbb{N}}$ can be partitioned into $ \aleph _1$ many disjoint translates of a closed set.

References [Enhancements On Off] (What's this?)

  • 1. M. Balcerzak, Can ideals without ccc be interesting?, Topol. Appl. 55 (1994), 251-260. MR 1259508 (95g:54032)
  • 2. M. Balcerzak, A. Rosłanowski, S. Shelah, Ideals without ccc, J. Symb. Logic 63 (1998), 128-148. MR 1610790 (99j:03039)
  • 3. T. Banakh, N. Lyaskovska, D. Repovs, Packing index of subsets in Polish groups, Notre Dame J. Formal Logic 50(4) (2009), 453-468. MR 2598874
  • 4. J. Cichoń, A. Jasiński, A. Kamburelis, P. Szczepaniak, On translations of subsets of the real line, Proc. Amer. Math. Soc. 130(6) (2002), 1833-1842. MR 1887032 (2002k:03075)
  • 5. J. Cichoń, A.B. Kharazishvili, B. Weglorz, On sets of Vitali's type, Proc. Amer. Math. Soc. 118(4) (1993), 1243-1250. MR 1151809 (93j:28015)
  • 6. U. B. Darji, T. Keleti, Covering $ \mathbb{R}$ with translates of a compact set, Proc. Amer. Math. Soc. 131(8) (2003), 2593-2596. MR 1974660 (2004d:03100)
  • 7. T. Dobrowolski, W. Marciszewski, Covering a Polish group by translates of a nowhere dense set, Topology and its Applications 155 (2008), 1221-1226. MR 2421832 (2009d:03112)
  • 8. M. Elekes, J. Steprans, Less than $ 2^{\omega }$ many translates of a compact nullset may cover the real line, Fund. Math. 181(1) (2004), 89-96. MR 2071696 (2005h:28034)
  • 9. M. Elekes, Á. Tóth, Covering locally compact groups by less than $ 2^{\omega }$ many translates of a compact nullset, Fund. Math. 193 (2007), 243-257. MR 2289771 (2008g:28072)
  • 10. D.H. Fremlin, Measure-additive coverings and measurable selectors, Diss. Math. CCLX (1987). MR 928693 (89e:28012)
  • 11. D.H. Fremlin, Skew products of ideals, J. Applied Analysis 9 (2003), 1-18. MR 1997780 (2004f:03086)
  • 12. M. Gavalec, Iterated products of ideals of Borel sets, Coll. Math. 50 (1985), 39-52. MR 818086 (87e:54086)
  • 13. A. S. Kechris, Classical descriptive set theory, Graduate Texts in Math. 156, Springer-Verlag (1995). MR 1321597 (96e:03057)
  • 14. W. Kubiś, Perfect cliques and $ G_\delta $ colorings of Polish spaces, Proc. Amer. Math. Soc. 131 (2003), 619-623. MR 1933354 (2004g:54043)
  • 15. Á. Máthé, Covering the real line with translates of a zero-dimensional compact set, Fund. Math. 213 (2011), 213-219. MR 2822418
  • 16. T. Mátrai, Infinite dimensional perfect set theorems, Trans. Amer. Math. Soc., to appear.
  • 17. A. W. Miller, Covering $ 2^{\textstyle \omega }$ with $ \omega _1$ disjoint closed sets, in: The Kleene Symposium, J. Barwise, J. Keisler, and K. Kunen (eds.), North-Holland (1980), 415-421. MR 591893 (82k:03083)
  • 18. A. W. Miller, Descriptive Set Theory and Forcing: How to Prove Theorems about Borel Sets the Hard Way, Lecture Notes in Logic 4, Springer-Verlag (1995). MR 1439251 (98g:03119)
  • 19. A. W. Miller, J. Steprans, The number of translates of a closed nowhere dense set required to cover a Polish group, Ann. Pure Appl. Logic 140 (2006), 52-59. MR 2224048 (2007a:03059)
  • 20. I. Recław, P. Zakrzewski, Fubini properties of ideals, Real Analysis Exchange 25(2) (1999/00), 565-578. MR 1778511 (2001e:03086)
  • 21. A. Rosłanowski, S. Shelah, Norms on possibilities II: More ccc ideals on $ 2^{\textstyle \omega }$, J. Applied Analysis 3 (1997), 103-127. MR 1618851 (2000c:03037)
  • 22. S. Solecki, A Fubini theorem, Topology Appl. 154 (2007), 2462-2464. MR 2333801 (2008d:54026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03E15, 03E05, 54H05, 28C10

Retrieve articles in all journals with MSC (2000): 03E15, 03E05, 54H05, 28C10


Additional Information

Piotr Zakrzewski
Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
Email: piotrzak@mimuw.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-2012-11384-X
Received by editor(s): May 11, 2011
Received by editor(s) in revised form: August 4, 2011
Published electronically: August 3, 2012
Additional Notes: This research was partially supported by MNiSW Grant Nr N N201 543638.
Communicated by: Julia Knight
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society