Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Algebraic characterization of isometries of the complex and the quaternionic hyperbolic $ 3$-spaces


Author: Krishnendu Gongopadhyay
Journal: Proc. Amer. Math. Soc. 141 (2013), 1017-1027
MSC (2010): Primary 51M10; Secondary 15B57, 53C35
DOI: https://doi.org/10.1090/S0002-9939-2012-11422-4
Published electronically: July 26, 2012
MathSciNet review: 3003693
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbf {H}^3_{\mathbb{F}}$ denote the three dimensional hyperbolic space over $ \mathbb{F}$, where $ \mathbb{F}$ denotes either the complex numbers $ \mathbb{C}$ or the quaternions $ \mathbb{H}$. We offer an algebraic characterization of isometries of $ \mathbf {H}^3_{\mathbb{F}}$.


References [Enhancements On Off] (What's this?)

  • [Be] A. F. Beardon, The geometry of discrete groups, Berlin, New York: Springer-Verlag, 1983. MR 698777 (85d:22026)
  • [BP] W. S. Burnside and A. W. Patron, The theory of equations with an introduction to the theory of binary algebraic forms, Dublin University Press Series, 1881.
  • [CaGo] W. S. Cao and K. Gongopadhyay, Algebraic characterization of isometries of the complex and the quaternionic hyperbolic planes. Geom. Dedicata 157, no. 1 (2012), 23-39. MR 2893478
  • [D] L. E. Dickson, Elementary Theory of Equations. John Wiley & Sons, New York, 1914.
  • [ChGr] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis. Academic Press, New York, 1974, 49-87. MR 0377765 (51:13934)
  • [Gol] W. M. Goldman, Complex Hyperbolic Geometry. Oxford University Press, 1999. MR 1695450 (2000g:32029)
  • [Go] K. Gongopadhyay, Algebraic characterization of the isometries of the hyperbolic $ 5$-space. Geom. Dedicata (1) 144 (2010), 157-170. MR 2580424 (2011a:57004)
  • [L] H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients. Proc. Roy. Irish Acad. Sect. A. 52 (1949), 253-260. MR 0036738 (12:153i)
  • [Mc] I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford University Press, 1995. MR 1354144 (96h:05207)
  • [Mo] G.D. Mostow, Strong Rigidity of Locally Symmetric Spaces. Annals of Math. Studies, 78, Princeton University Press; University of Tokyo Press, 1973. MR 0385004 (52:5874)
  • [Na] J.-P. Navarrete. The trace function and complex Kleinian groups in $ \mathbb{P}^2_{\mathbb{C}}$, Internat. J. Math. 19, no. 7 (2008), 865-890. MR 2437075 (2009g:32056)
  • [Re] E. L. Rees, Graphical discussion of the roots of a quartic equation, Amer. Math. Monthly, 29, no. 2 (1922), pp. 51-55. MR 1519936
  • [R] L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, Academic Press (London), 1980. MR 576061 (82a:16021)
  • [SV] J. Seade and A. Verjovsky. Actions of discrete groups on complex projective spaces. Contemporary Math., 269, Amer. Math. Soc., 2001, 155-178. MR 1810539 (2002d:32024)
  • [Z] F. Zhang, Quaternions and matrices of quaternions. Linear Algebra Appl. 251 (1997), 21-57. MR 1421264 (97h:15020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 51M10, 15B57, 53C35

Retrieve articles in all journals with MSC (2010): 51M10, 15B57, 53C35


Additional Information

Krishnendu Gongopadhyay
Affiliation: Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, S.A.S. Nagar, Sector 81, Mohali 140306, India
Email: krishnendug@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2012-11422-4
Keywords: Isometry, complex and quaternionic hyperbolic space, classification
Received by editor(s): March 31, 2011
Received by editor(s) in revised form: July 24, 2011
Published electronically: July 26, 2012
Additional Notes: The author gratefully acknowledges the support of SERC-DST FAST grant SR/FTP/MS-004/2010.
Communicated by: Michael Wolf
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society