Algebraic characterization of isometries of the complex and the quaternionic hyperbolic -spaces

Author:
Krishnendu Gongopadhyay

Journal:
Proc. Amer. Math. Soc. **141** (2013), 1017-1027

MSC (2010):
Primary 51M10; Secondary 15B57, 53C35

DOI:
https://doi.org/10.1090/S0002-9939-2012-11422-4

Published electronically:
July 26, 2012

MathSciNet review:
3003693

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the three dimensional hyperbolic space over , where denotes either the complex numbers or the quaternions . We offer an algebraic characterization of isometries of .

**[Be]**A. F. Beardon,*The geometry of discrete groups*, Berlin, New York: Springer-Verlag, 1983. MR**698777 (85d:22026)****[BP]**W. S. Burnside and A. W. Patron,*The theory of equations with an introduction to the theory of binary algebraic forms*, Dublin University Press Series, 1881.**[CaGo]**W. S. Cao and K. Gongopadhyay,*Algebraic characterization of isometries of the complex and the quaternionic hyperbolic planes*. Geom. Dedicata**157**, no. 1 (2012), 23-39. MR**2893478****[D]**L. E. Dickson,*Elementary Theory of Equations*. John Wiley & Sons, New York, 1914.**[ChGr]**S. S. Chen and L. Greenberg,*Hyperbolic spaces*, Contributions to analysis. Academic Press, New York, 1974, 49-87. MR**0377765 (51:13934)****[Gol]**W. M. Goldman,*Complex Hyperbolic Geometry*. Oxford University Press, 1999. MR**1695450 (2000g:32029)****[Go]**K. Gongopadhyay,*Algebraic characterization of the isometries of the hyperbolic -space*. Geom. Dedicata (1)**144**(2010), 157-170. MR**2580424 (2011a:57004)****[L]**H. C. Lee,*Eigenvalues and canonical forms of matrices with quaternion coefficients*. Proc. Roy. Irish Acad. Sect. A.**52**(1949), 253-260. MR**0036738 (12:153i)****[Mc]**I. G. Macdonald,*Symmetric functions and Hall polynomials*. Oxford University Press, 1995. MR**1354144 (96h:05207)****[Mo]**G.D. Mostow,*Strong Rigidity of Locally Symmetric Spaces*. Annals of Math. Studies, 78, Princeton University Press; University of Tokyo Press, 1973. MR**0385004 (52:5874)****[Na]**J.-P. Navarrete.*The trace function and complex Kleinian groups in*, Internat. J. Math.**19**, no. 7 (2008), 865-890. MR**2437075 (2009g:32056)****[Re]**E. L. Rees,*Graphical discussion of the roots of a quartic equation*, Amer. Math. Monthly,**29**, no. 2 (1922), pp. 51-55. MR**1519936****[R]**L. H. Rowen,*Polynomial Identities in Ring Theory*, Pure and Applied Mathematics, Academic Press (London), 1980. MR**576061 (82a:16021)****[SV]**J. Seade and A. Verjovsky.*Actions of discrete groups on complex projective spaces*. Contemporary Math., 269, Amer. Math. Soc., 2001, 155-178. MR**1810539 (2002d:32024)****[Z]**F. Zhang,*Quaternions and matrices of quaternions*. Linear Algebra Appl.**251**(1997), 21-57. MR**1421264 (97h:15020)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
51M10,
15B57,
53C35

Retrieve articles in all journals with MSC (2010): 51M10, 15B57, 53C35

Additional Information

**Krishnendu Gongopadhyay**

Affiliation:
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, S.A.S. Nagar, Sector 81, Mohali 140306, India

Email:
krishnendug@gmail.com

DOI:
https://doi.org/10.1090/S0002-9939-2012-11422-4

Keywords:
Isometry,
complex and quaternionic hyperbolic space,
classification

Received by editor(s):
March 31, 2011

Received by editor(s) in revised form:
July 24, 2011

Published electronically:
July 26, 2012

Additional Notes:
The author gratefully acknowledges the support of SERC-DST FAST grant SR/FTP/MS-004/2010.

Communicated by:
Michael Wolf

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.