Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

The Dixmier approximation theorem in algebras of measurable operators


Authors: Guy H. Flint, Ben de Pagter and Fedor A. Sukochev
Journal: Proc. Amer. Math. Soc. 141 (2013), 909-918
MSC (2010): Primary 46L51, 47B10; Secondary 46L52
DOI: https://doi.org/10.1090/S0002-9939-2012-11479-0
Published electronically: July 2, 2012
MathSciNet review: 3003683
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we are concerned with proving versions of the classical Dixmier approximation theorem in the setting of algebras of $ \tau $-measurable operators $ S\left ( \mathcal {M},\tau \right ) $ and its $ \mathcal {M}$-bimodules, where $ \mathcal {M}$ is a semi-finite von Neumann algebra equipped with a semi-finite normal faithful trace $ \tau $.


References [Enhancements On Off] (What's this?)

  • 1. J. Dixmier, Les anneaux d'opérateurs de class finie, Ann. Sci. École Norm. Sup. 66 (1949), 209 - 261. MR 0032940 (11:370c)
  • 2. P.G. Dodds, T.K. Dodds and B. de Pagter, Non-commutative Banach function spaces, Math. Z. 201 (1989), 583 - 597. MR 1004176 (90j:46054)
  • 3. P.G. Dodds, T.K. Dodds and B. de Pagter, Non-commutative Köthe duality, TAMS 339 (1993), 717 - 750. MR 1113694 (94a:46093)
  • 4. P.G. Dodds, T.K. Dodds and F.A. Sukochev, Banach-Saks properties in symmetric spaces of measurable operators, Studia Math. 178 (2007), 125 - 166. MR 2285436 (2008d:46083)
  • 5. P.G. Dodds, T.K. Dodds, F.A. Sukochev and O.Ye. Tikhonov, A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure, Positivity 9 (2005), 457-484. MR 2188531 (2006h:46062)
  • 6. P.G. Dodds, B. de Pagter and F.A. Sukochev, Non-commutative Integration, in progress.
  • 7. Th. Fack and H. Kosaki, Generalized $ s$-numbers of $ \tau $-measurable operators, Pacific J. Math. 123 (1986), 269 - 300. MR 840845 (87h:46122)
  • 8. F. Hiai, Spectral majorization between normal operators in von Neumann algebras. Operator algebras and operator theory (Craiova, 1989), 78-115, Pitman Res. Notes Math. Ser., 271, Longman Sci. Tech., Harlow, 1992. MR 1189168 (94a:46094)
  • 9. F. Hiai and Y. Nakamura, Closed convex hulls of unitary orbits in von Neumann algebras, TAMS 323 (1991), 1 - 38. MR 984856 (91c:46083)
  • 10. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras II, Academic Press, Orlando, 1986. MR 859186 (88d:46106)
  • 11. N.J. Kalton and F.A. Sukochev, Symmetric norms and spaces of operators, J. für die reine und angewandte Mathematik 621 (2008), 81 - 121. MR 2431251 (2009i:46118)
  • 12. S.G. Krein, Ju.I. Petunin and E.M. Semenov, Interpolation of Linear Operators, Transl. Math. Monographs, Vol. 54, Amer. Math. Soc., Providence, 1982. MR 649411 (84j:46103)
  • 13. E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103 - 116. MR 0355628 (50:8102)
  • 14. A. Paszkiewicz, Convergence almost everywhere in $ W^{\ast }$-algebras. Quantum probability and applications, II (Heidelberg, 1984), 420-427, Lecture Notes in Math., 1136, Springer, Berlin, 1985. MR 819522 (87d:46074)
  • 15. M. Terp, $ L^{p}$-spaces associated with von Neumann algebras, Notes, Copenhagen University (1981).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L51, 47B10, 46L52

Retrieve articles in all journals with MSC (2010): 46L51, 47B10, 46L52


Additional Information

Guy H. Flint
Affiliation: School of Mathematics and Statistics, University of New South Wales, Kensington 2052, NSW, Australia
Email: guy.flint@gmail.com

Ben de Pagter
Affiliation: Delft Institute of Applied Mathematics, Delft University of Technology, Fac. EEMCS, Mekelweg 4, 2628CD Delft, The Netherlands
Email: b.depagter@tudelft.nl

Fedor A. Sukochev
Affiliation: School of Mathematics and Statistics, University of New South Wales, Kensington 2052, NSW, Australia
Email: f.sukochev@unsw.edu.au

DOI: https://doi.org/10.1090/S0002-9939-2012-11479-0
Keywords: Dixmier approximation theorem, $𝜏$-measurable operators, bimodules of measurable operators
Received by editor(s): July 14, 2011
Published electronically: July 2, 2012
Additional Notes: The work of the third author was supported by the ARC
Communicated by: Marius Junge
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society