Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Counting equivalence classes of vertex pairs modulo the dihedral action on the associahedron


Authors: Douglas Bowman and Alon Regev
Journal: Proc. Amer. Math. Soc. 141 (2013), 779-789
MSC (2010): Primary 05C30, 32B25, 52B11, 52B15, 52B05, 05E18
DOI: https://doi.org/10.1090/S0002-9939-2012-11626-0
Published electronically: July 12, 2012
MathSciNet review: 3003672
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper proves explicit formulae for the number of edges, $ 2$-sets and diagonals in the associahedron of dimension $ n$ modulo the action of the dihedral group. A generating function for the number of $ k$-sets modulo this action, as well as a formula for the cycle index, is given. A table of values is also provided.


References [Enhancements On Off] (What's this?)

  • 1. L. Bowen, J. A. De Loera, M. Develin, and F. Santos, The Gromov norm of the product of two surfaces, Topology 44 (2005), no. 2, 321-339. MR 2114710 (2005h:57023)
  • 2. W. G. Brown, Enumeration of triangulations of the disk, Proc. London Math. Soc. (3) 14 (1964) 746-768. MR 0168485 (29:5747)
  • 3. W. G. Brown, Historical note on a recurrent combinatorial problem, Amer. Math. Monthly 72 (1965), 973-977. MR 1533479
  • 4. W. Burnside, Theory of Groups of Finite Order, 2nd ed., Cambridge University Press, Cambridge, 1911, p. 191.
  • 5. J. A. De Loera, J. Rambau, and F. Santos, Triangulations: Structures for Algorithms and Applications, Springer-Verlag, Berlin, 2010. MR 2743368 (2011j:52037)
  • 6. F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973. MR 0357214 (50:9682)
  • 7. D. Huguet and D. Tamari, La structure polyédrale des complexes de parenthésages, J. Combin. Inform. System Sci. 3 (1978) 69-81. MR 538214 (80h:05016)
  • 8. C. Lee, The associahedron and triangulations of the $ n$-gon, European J. Combin. 10 (1989), no. 6, 551-560. MR 1022776 (90i:52010)
  • 9. P. Lisonek, Closed forms for the number of polygon dissections. Journal of Symbolic Computation 20 (1995), 595-601. MR 1395415 (97j:52019)
  • 10. J. W. Moon and L. Moser, Triangular dissections of $ n$-gons, Canad. Math. Bull. 6 (1963), 175-178. MR 0154821 (27:4765)
  • 11. G. Pòlya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145-254.
  • 12. R. C. Read, On general dissections of a polygon, Aequat. Math. 18 (1978), 370-388. MR 522523 (80e:05069)
  • 13. D. D. Sleator, R. E. Tarjan, and W. P. Thurston, Rotation Distance, Triangulations, and Hyperbolic Geometry, Journal of the American Mathematical Society, Vol. 1, No. 3, 1988. MR 928904 (90h:68026)
  • 14. H. S. Wilf, Generatingfunctionology, 2nd ed., Academic Press, Boston, MA, 1994. MR 1277813 (95a:05002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 05C30, 32B25, 52B11, 52B15, 52B05, 05E18

Retrieve articles in all journals with MSC (2010): 05C30, 32B25, 52B11, 52B15, 52B05, 05E18


Additional Information

Douglas Bowman
Affiliation: Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115
Email: bowman@math.niu.edu

Alon Regev
Affiliation: Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115
Email: regev@math.niu.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11626-0
Received by editor(s): February 17, 2011
Received by editor(s) in revised form: July 17, 2011
Published electronically: July 12, 2012
Communicated by: Jim Haglund
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society