On the volume of complex amoebas
Authors:
Farid Madani and Mounir Nisse
Journal:
Proc. Amer. Math. Soc. 141 (2013), 11131123
MSC (2010):
Primary 14T05, 32A60
Published electronically:
August 17, 2012
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The paper deals with amoebas of dimensional algebraic varieties in the complex algebraic torus of dimension . First, we show that the area of complex algebraic curve amoebas is finite. Moreover, we give an estimate of this area in the rational curve case in terms of the degree of the rational parametrization coordinates. We also show that the volume of the amoeba of a dimensional algebraic variety in , with , is finite.
 [B71]
George
M. Bergman, The logarithmic limitset of an
algebraic variety, Trans. Amer. Math. Soc.
157 (1971),
459–469. MR 0280489
(43 #6209), http://dx.doi.org/10.1090/S00029947197102804898
 [BG84]
Robert
Bieri and J.
R. J. Groves, The geometry of the set of characters induced by
valuations, J. Reine Angew. Math. 347 (1984),
168–195. MR
733052 (86c:14001)
 [FPT00]
Mikael
Forsberg, Mikael
Passare, and August
Tsikh, Laurent determinants and arrangements of hyperplane
amoebas, Adv. Math. 151 (2000), no. 1,
45–70. MR
1752241 (2001m:32060), http://dx.doi.org/10.1006/aima.1999.1856
 [GKZ94]
I.
M. Gel′fand, M.
M. Kapranov, and A.
V. Zelevinsky, Discriminants, resultants, and multidimensional
determinants, Mathematics: Theory & Applications, Birkhäuser
Boston, Inc., Boston, MA, 1994. MR 1264417
(95e:14045)
 [M102]
Grigory
Mikhalkin, Decomposition into pairsofpants for complex algebraic
hypersurfaces, Topology 43 (2004), no. 5,
1035–1065. MR 2079993
(2005i:14055), http://dx.doi.org/10.1016/j.top.2003.11.006
 [M204]
Grigory
Mikhalkin, Enumerative tropical algebraic
geometry in ℝ², J. Amer. Math.
Soc. 18 (2005), no. 2, 313–377. MR 2137980
(2006b:14097), http://dx.doi.org/10.1090/S0894034705004777
 [M300]
G.
Mikhalkin, Real algebraic curves, the moment map and amoebas,
Ann. of Math. (2) 151 (2000), no. 1, 309–326.
MR
1745011 (2001c:14083), http://dx.doi.org/10.2307/121119
 [MR00]
Grigory
Mikhalkin and Hans
Rullgård, Amoebas of maximal area, Internat. Math. Res.
Notices 9 (2001), 441–451. MR 1829380
(2002b:14079), http://dx.doi.org/10.1155/S107379280100023X
 [NP10]
M. Nisse and M. Passare, (Co)Amoebas of linear spaces, arXiv:1205.2808.
 [NS11]
M. Nisse and F. Sottile, The phase limit set of a variety, Algebra and Number Theory, to appear.
 [PR04]
Mikael
Passare and Hans
Rullgård, Amoebas, MongeAmpère measures, and
triangulations of the Newton polytope, Duke Math. J.
121 (2004), no. 3, 481–507. MR 2040284
(2005a:32005), http://dx.doi.org/10.1215/S0012709404121347
 [PS04]
Lior
Pachter and Bernd
Sturmfels (eds.), Algebraic statistics for computational
biology, Cambridge University Press, New York, 2005. MR 2205865
(2006i:92002)
 [RST05]
Jürgen
RichterGebert, Bernd
Sturmfels, and Thorsten
Theobald, First steps in tropical geometry, Idempotent
mathematics and mathematical physics, Contemp. Math., vol. 377, Amer.
Math. Soc., Providence, RI, 2005, pp. 289–317. MR 2149011
(2006d:14073), http://dx.doi.org/10.1090/conm/377/06998
 [R01]
H. Rullgård, Polynomial amoebas and convexity, Research Reports in Mathematics, Number 8, 2001, Department of Mathematics, Stockholm University.
 [B71]
 G. M. Bergman, The logarithmic limitset of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459469. MR 0280489 (43:6209)
 [BG84]
 R. Bieri and J.R.J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168195. MR 733052 (86c:14001)
 [FPT00]
 M. Forsberg, M. Passare and A. Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Advances in Math. 151 (2000), 4570. MR 1752241 (2001m:32060)
 [GKZ94]
 I. M. Gelfand, M. M. Kapranov and A. V. Zelevinski, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994. MR 1264417 (95e:14045)
 [M102]
 G. Mikhalkin, Decomposition into pairsofpants for complex algebraic hypersurfaces, Topology 43 (2004), 10351065. MR 2079993 (2005i:14055)
 [M204]
 G. Mikhalkin, Enumerative tropical algebraic geometry in , J. Amer. Math. Soc. 18 (2005), 313377. MR 2137980 (2006b:14097)
 [M300]
 G. Mikhalkin, Real algebraic curves, moment map and amoebas, Ann. of Math. (2) 151 (2000), 309326. MR 1745011 (2001c:14083)
 [MR00]
 G. Mikhalkin and H. Rullgård, Amoebas of maximal area, Int. Math. Res. Notices 9 (2001), 441451. MR 1829380 (2002b:14079)
 [NP10]
 M. Nisse and M. Passare, (Co)Amoebas of linear spaces, arXiv:1205.2808.
 [NS11]
 M. Nisse and F. Sottile, The phase limit set of a variety, Algebra and Number Theory, to appear.
 [PR04]
 M. Passare and H. Rullgård, Amoebas, MongeAmpère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004), 481507. MR 2040284 (2005a:32005)
 [PS04]
 L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology, Cambridge University Press, 2004. MR 2205865 (2006i:92002)
 [RST05]
 J. RichterGebert, B. Sturmfels and T. Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 289317. MR 2149011 (2006d:14073)
 [R01]
 H. Rullgård, Polynomial amoebas and convexity, Research Reports in Mathematics, Number 8, 2001, Department of Mathematics, Stockholm University.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
14T05,
32A60
Retrieve articles in all journals
with MSC (2010):
14T05,
32A60
Additional Information
Farid Madani
Affiliation:
NWF IMathematik, Universität Regensburg, 93040 Regensburg, Germany
Email:
Farid.Madani@mathematik.uni
Mounir Nisse
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 778433368
Email:
nisse@math.tamu.edu
DOI:
http://dx.doi.org/10.1090/S000299392012113942
PII:
S 00029939(2012)113942
Keywords:
Algebraic varieties,
amoebas,
logarithmic limit sets
Received by editor(s):
February 11, 2011
Received by editor(s) in revised form:
August 6, 2011
Published electronically:
August 17, 2012
Additional Notes:
The first author is supported by the Alexander von Humboldt Foundation.
The research of the second author is partially supported by NSF MCS grant DMS0915245.
Dedicated:
Dedicated to the memory of Mikael Passare (1959–2011)
Communicated by:
Lev Borisov
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
