TORIC HIRZEBRUCH-RIEMANN-ROCH
VIA ISHIDA’S THEOREM ON THE TODD GENUS

HAL SCHENCK

(Communicated by Irena Peeva)

Abstract. We give a simple proof of the Hirzebruch-Riemann-Roch theorem for smooth complete toric varieties, based on Ishida’s result that the Todd genus of a smooth complete toric variety is one.

1. Introduction

The Hirzebruch-Riemann-Roch theorem relates the Euler characteristic of a coherent sheaf F on a smooth complete n-dimensional variety X to intersection theory via the formula

$$\chi(F) = \int ch(F)Td(T_X).$$

In [2], Brion and Vergne prove an equivariant Hirzebruch-Riemann-Roch theorem for complete simplicial toric varieties. If the toric variety is actually smooth, it is possible to derive (1) from their result. In this note, we give a simple direct proof of (1) when X is a smooth complete toric variety. Such a variety is determined by a smooth complete rational polyhedral fan $\Sigma \subseteq \mathbb{R}^n$, where $N \simeq \mathbb{Z}^n$ is a lattice; we write X for the associated toric variety X_{Σ}. We will make use of the following standard facts about toric varieties. First,

$$Td(X_{\Sigma}) = \prod_{\rho \in \Sigma(1)} \frac{D_\rho}{1 - e^{-D_\rho}},$$

where $\Sigma(k)$ denotes the set of k-dimensional faces of Σ. For $\tau \in \Sigma(k)$ there is an associated torus invariant orbit $O(\tau)$, and we use $V(\tau)$ to denote the orbit closure $\overline{O(\tau)}$, which has dimension $n - k$. A key fact is that (see [4], Proposition 3.2.7)

$$V(\tau) = \overline{O(\tau)} \simeq X_{\text{Star}(\tau)}.$$

Since Σ is smooth, all orbits are also smooth, and if ρ_i, ρ_j are distinct elements of $\Sigma(1)$, then (see [4], Lemma 12.5.7)

$$[D_{\rho_i}, V(\rho_j)] = \begin{cases} V(\tau) & \tau = \rho_i + \rho_j \in \Sigma \\ 0 & \rho_i, \rho_j \text{ are not both in any cone in } \Sigma. \end{cases}$$
The final ingredient we need is a result of Ishida: building on work of Brion \cite{5}, in \cite{1} Ishida shows that (1) holds for the structure sheaf of a smooth complete toric variety X:

\begin{equation}
1 = \int Td(T_X) = \left[\prod_{\rho \in \Sigma(1)} \frac{D_{\rho}}{1 - e^{-D_{\rho}}} \right]_n.
\end{equation}

2. The proof

For a smooth complete toric variety, any coherent sheaf has a resolution by line bundles \cite{3}, so it suffices to consider the case $F = \mathcal{O}_X(D)$. Let $X = X_\Sigma$ and recall that Pic(X) is generated by the classes of the divisors D_{ρ}, $\rho \in \Sigma(1)$. We will show that if (1) holds for a divisor D, then it also holds for $D + D_{\rho}$ and $D - D_{\rho}$, for any $\rho \in \Sigma(1)$. We begin with the case $D - D_{\rho}$ and induct on the dimension of X.

A smooth complete toric variety of dimension one is simply \mathbb{P}^1, so the base case holds by Riemann-Roch for curves. Suppose the theorem holds for all smooth complete fans of dimension $< n$ and let Σ be a smooth complete fan of dimension n. When $D = 0$ the result holds by Ishida’s theorem. Let $\rho \in \Sigma(1)$ and partition the rays of Σ as

\[\Sigma(1) = \rho \cup \Sigma'(1) \cup \Sigma''(1), \]

where the rays in $\Sigma'(1)$ are in one-to-one correspondence with the rays of the fan $\text{Star}(\rho)$. Let $X' = X_{\text{Star}(\rho)} \simeq V(\rho)$. Tensoring the standard exact sequence

\[0 \rightarrow \mathcal{O}_X(-D_{\rho}) \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_{X'} \rightarrow 0 \]

with $\mathcal{O}_X(D)$ yields the sequence

\[0 \rightarrow \mathcal{O}_X(D - D_{\rho}) \rightarrow \mathcal{O}_X(D) \rightarrow \mathcal{O}_{X'}(D) \rightarrow 0. \]

From the additivity of the Euler characteristic, we have

\[\chi(\mathcal{O}_X(D)) - \chi(\mathcal{O}_X(D - D_{\rho})) = \chi(\mathcal{O}_{X'}(D)). \]

Our hypotheses imply that

\[\int_{X'} e^D Td(T_{X'}) = \chi(\mathcal{O}_{X'}(D)), \]

\[\int_X e^D Td(T_X) = \chi(\mathcal{O}_X(D)), \]

so it suffices to show that

\begin{equation}
\int_{X'} \text{ch}(D) Td(T_{X'}) = \int_X (e^D - e^{D - D_{\rho}}) Td(T_X)
\end{equation}

\[= \int_X e^D \left(\frac{1 - e^{-D_{\rho}}}{D_{\rho}} \right) D_{\rho} Td(T_X). \]

Break the Todd class of X into two parts:

\[Td(T_X) = \prod_{\gamma \in \Sigma'(1) \cup \rho} \frac{D_\gamma}{1 - e^{-D_\gamma}} \cdot \prod_{\gamma \in \Sigma''(1)} \frac{D_\gamma}{1 - e^{-D_\gamma}}. \]
In (5), the term $\frac{1 - e^{-D_{\rho}}}{D_{\rho}}$ cancels the corresponding term in $Td(T_X)$, so that

$$\int_X e^D \left(1 - e^{-D_{\rho}} \right) D_{\rho} Td(T_X) = \int_X e^D D_{\rho} \prod_{\gamma \in \Sigma'(1) \cup \Sigma''(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}},$$

(6)

The second equality follows since $D_{\rho} \cdot D_{\gamma} = 0$ if $\gamma \in \Sigma''(1)$. By smoothness, all intersections are either zero or one, and thus

$$\int_X e^D D_{\rho} \prod_{\gamma \in \Sigma'(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}} = \left[e^D \right]_{V(\rho)} \prod_{\gamma \in \Sigma'(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}}.$$

$$= \left[e^D \right]_{V(\rho)} \prod_{\gamma \in \Sigma'(1)} \frac{D_{\gamma}}{1 - e^{-D_{\gamma}}} \cdot$$

$$= \int_{X'} e^D \cdot Td(T_{X'}).$$

This proves the result for $D - D_{\rho}$. For $D + D_{\rho}$, the result follows using the substitution $e^{D_{\rho}} - 1 = e^{D_{\rho}} (1 - e^{-D_{\rho}})$.

Question. Ishida’s proof (4) is not easy. Does there exist a simple proof of (4)?

Acknowledgements

The author thanks David Cox for pointing out Ishida’s result to him and the referee for useful comments.

References

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

E-mail address: schenck@math.uiuc.edu