Riesz bases consisting of root functions of 1D Dirac operators

Authors:
Plamen Djakov and Boris Mityagin

Journal:
Proc. Amer. Math. Soc. **141** (2013), 1361-1375

MSC (2010):
Primary 47E05, 34L40

DOI:
https://doi.org/10.1090/S0002-9939-2012-11611-9

Published electronically:
September 12, 2012

MathSciNet review:
3008883

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For one-dimensional Dirac operators

In particular, if the potential matrix is skew-symmetric (i.e., ), or more generally if for some real then there exists a Riesz basis that consists of root functions of the operator

**1.**N. Dernek and O. A. Veliev, On the Riesz basisness of the root functions of the nonself-adjoint Sturm-Liouville operato, Israel J. Math.**145**(2005), 113-123. MR**2154723 (2006b:34188)****2.**P. Djakov and B. Mityagin, Instability zones of periodic 1D Schrödinger and Dirac operators, in Russian, Uspekhi Mat. Nauk**61**(2006), 77-182; English translation: Russian Math. Surveys**61**(2006), 663-766. MR**2279044 (2007i:47054)****3.**P. Djakov and B. Mityagin, Asymptotics of instability zones of the Hill operator with a two term potential, J. Funct. Anal.**242**(2007), 157-194. MR**2274019 (2007j:34176)****4.**P. Djakov and B. Mityagin, Bari-Markus property for Riesz projections of 1D periodic Dirac operators, Math. Nachr.**283**(2010), 443-462. MR**2643021 (2011d:34170)****5.**P. Djakov and B. Mityagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Doklady Math.**83**(2011), 5-7. MR**2810153****6.**P. Djakov and B. Mityagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Mathematische Annalen**351**(2011), 509-540. MR**2854104****7.**P. Djakov and B. Mityagin, 1D Dirac operators with special periodic potentials, Bull. Pol. Acad. Sci. Math.**60**(2012), 59-75. MR**2901387****8.**F. Gesztesy and V. Tkachenko, A Schauder and Riesz basis criterion for non-self-adjoint Schrödinger operators with periodic and anti-periodic boundary conditions, J. Differential Equations**253**(2012), 400-437.**9.**I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translation of Mathematical Monographs, vol. 18. American Mathematical Society, Providence, Rhode Island, 1969. MR**0246142 (39:7447)****10.**A. Makin, On spectral decompositions corresponding to non-self-adjoint Sturm-Liouville

operators, Dokl. Math.**73**(2006), 15-18.**11.**A. S. Makin, Convergence of expansions in the root functions of periodic boundary value problems, Dokl. Math.**73**(2006), 71-76.**12.**A. Makin, On the basis property of systems of root functions of regular boundary value problems for the Sturm-Liouville operator, Differ. Eq.**42**(2006), 1717-1728. MR**2347119 (2008g:34216)****13.**B. Mityagin, Convergence of expansions in eigenfunctions of the Dirac operator. (Russian) Dokl. Akad. Nauk**393**(2003), 456-459. MR**2088512 (2005i:47073)****14.**B. Mityagin, Spectral expansions of one-dimensional periodic Dirac operators, Dyn. Partial Differ. Equ.**1**(2004), 125-191. MR**2126830 (2005m:34204)****15.**A. A. Shkalikov and O. A. Veliev, On the Riesz basis property of eigen- and associated functions of periodic and anti-periodic Sturm-Liouville problems, Math. Notes**85**(2009), 647-660. MR**2572858 (2010j:34200)****16.**O. A. Veliev, On the nonself-adjoint ordinary differential operators with periodic boundary conditions, Israel J. Math.**176**(2010), 195-207. MR**2653191 (2011i:34154)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
47E05,
34L40

Retrieve articles in all journals with MSC (2010): 47E05, 34L40

Additional Information

**Plamen Djakov**

Affiliation:
Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey

Email:
djakov@sabanciuniv.edu

**Boris Mityagin**

Affiliation:
Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210

Email:
mityagin.1@osu.edu

DOI:
https://doi.org/10.1090/S0002-9939-2012-11611-9

Received by editor(s):
August 20, 2011

Published electronically:
September 12, 2012

Additional Notes:
The first author acknowledges the hospitality of the Department of Mathematics and the support of the Mathematical Research Institute of The Ohio State University, July - August 2011.

The second author acknowledges the support of the Scientific and Technological Research Council of Turkey and the hospitality of Sabanci University, April - June 2011.

Communicated by:
James E. Colliander

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.