Riesz bases consisting of root functions of 1D Dirac operators

Authors:
Plamen Djakov and Boris Mityagin

Journal:
Proc. Amer. Math. Soc. **141** (2013), 1361-1375

MSC (2010):
Primary 47E05, 34L40

Published electronically:
September 12, 2012

MathSciNet review:
3008883

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For one-dimensional Dirac operators

In particular, if the potential matrix is skew-symmetric (i.e., ), or more generally if for some real then there exists a Riesz basis that consists of root functions of the operator

**1.**Neşe Dernek and O. A. Veliev,*On the Riesz basisness of the root functions of the nonself-adjoint Sturm-Liouville operator*, Israel J. Math.**145**(2005), 113–123. MR**2154723**, 10.1007/BF02786687**2.**P. Dzhakov and B. S. Mityagin,*Instability zones of one-dimensional periodic Schrödinger and Dirac operators*, Uspekhi Mat. Nauk**61**(2006), no. 4(370), 77–182 (Russian, with Russian summary); English transl., Russian Math. Surveys**61**(2006), no. 4, 663–766. MR**2279044**, 10.1070/RM2006v061n04ABEH004343**3.**Plamen Djakov and Boris Mityagin,*Asymptotics of instability zones of the Hill operator with a two term potential*, J. Funct. Anal.**242**(2007), no. 1, 157–194. MR**2274019**, 10.1016/j.jfa.2006.06.013**4.**P. Djakov and B. Mityagin,*Bari-Markus property for Riesz projections of 1D periodic Dirac operators*, Math. Nachr.**283**(2010), no. 3, 443–462. MR**2643021**, 10.1002/mana.200910003**5.**P. B. Dzhakov and B. S. Mityagin,*Convergence of spectral decompositions of Hill operators with trigonometric polynomials as potentials*, Dokl. Akad. Nauk**436**(2011), no. 1, 11–13 (Russian); English transl., Dokl. Math.**83**(2011), no. 1, 5–7. MR**2810153**, 10.1134/S1064562411010017**6.**Plamen Djakov and Boris Mityagin,*Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials*, Math. Ann.**351**(2011), no. 3, 509–540. MR**2854104**, 10.1007/s00208-010-0612-5**7.**Plamen Djakov and Boris Mityagin,*1D Dirac operators with special periodic potentials*, Bull. Pol. Acad. Sci. Math.**60**(2012), no. 1, 59–75. MR**2901387**, 10.4064/ba60-1-5**8.**F. Gesztesy and V. Tkachenko, A Schauder and Riesz basis criterion for non-self-adjoint Schrödinger operators with periodic and anti-periodic boundary conditions, J. Differential Equations**253**(2012), 400-437.**9.**I. C. Gohberg and M. G. Kreĭn,*Introduction to the theory of linear nonselfadjoint operators*, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR**0246142****10.**A. Makin, On spectral decompositions corresponding to non-self-adjoint Sturm-Liouville

operators, Dokl. Math.**73**(2006), 15-18.**11.**A. S. Makin, Convergence of expansions in the root functions of periodic boundary value problems, Dokl. Math.**73**(2006), 71-76.**12.**A. S. Makin,*On the basis property of systems of root functions of regular boundary value problems for the Sturm-Liouville operator*, Differ. Uravn.**42**(2006), no. 12, 1646–1656, 1727 (Russian, with Russian summary); English transl., Differ. Equ.**42**(2006), no. 12, 1717–1728. MR**2347119**, 10.1134/S0012266106120068**13.**B. S. Mityagin,*Convergence of expansions in eigenfunctions of the Dirac operator*, Dokl. Akad. Nauk**393**(2003), no. 4, 456–459 (Russian). MR**2088512****14.**Boris Mityagin,*Spectral expansions of one-dimensional periodic Dirac operators*, Dyn. Partial Differ. Equ.**1**(2004), no. 2, 125–191. MR**2126830**, 10.4310/DPDE.2004.v1.n2.a1**15.**O. A. Veliev and A. A. Shkalikov,*On the Riesz basis property of eigen- and associated functions of periodic and anti-periodic Sturm-Liouville problems*, Mat. Zametki**85**(2009), no. 5, 671–686 (Russian, with Russian summary); English transl., Math. Notes**85**(2009), no. 5-6, 647–660. MR**2572858**, 10.1134/S0001434609050058**16.**O. A. Veliev,*On the nonself-adjoint ordinary differential operators with periodic boundary conditions*, Israel J. Math.**176**(2010), 195–207. MR**2653191**, 10.1007/s11856-010-0025-x

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
47E05,
34L40

Retrieve articles in all journals with MSC (2010): 47E05, 34L40

Additional Information

**Plamen Djakov**

Affiliation:
Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey

Email:
djakov@sabanciuniv.edu

**Boris Mityagin**

Affiliation:
Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210

Email:
mityagin.1@osu.edu

DOI:
https://doi.org/10.1090/S0002-9939-2012-11611-9

Received by editor(s):
August 20, 2011

Published electronically:
September 12, 2012

Additional Notes:
The first author acknowledges the hospitality of the Department of Mathematics and the support of the Mathematical Research Institute of The Ohio State University, July - August 2011.

The second author acknowledges the support of the Scientific and Technological Research Council of Turkey and the hospitality of Sabanci University, April - June 2011.

Communicated by:
James E. Colliander

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.