Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The triangular theorem of eight and representation by quadratic polynomials
HTML articles powered by AMS MathViewer

by Wieb Bosma and Ben Kane PDF
Proc. Amer. Math. Soc. 141 (2013), 1473-1486 Request permission

Abstract:

We investigate here the representability of integers as sums of triangular numbers, where the $n$-th triangular number is given by $T_n=$ $n(n+1)/2$. In particular, we show that $f(x_1, x_2, \ldots , x_k)=b_1T_{x_1}+\cdots +b_kT_{x_k}$, for fixed positive integers $b_1, b_2, \ldots , b_k$, represents every nonnegative integer if and only if it represents $1$, $2$, $4$, $5$, and $8$. Moreover, if ‘cross-terms’ are allowed in $f$, we show that no finite set of positive integers can play an analogous role, in turn showing that there is no overarching finiteness theorem which generalizes the statement from positive definite quadratic forms to totally positive quadratic polynomials.
References
  • Manjul Bhargava, On the Conway-Schneeberger fifteen theorem, Quadratic forms and their applications (Dublin, 1999) Contemp. Math., vol. 272, Amer. Math. Soc., Providence, RI, 2000, pp. 27–37. MR 1803359, DOI 10.1090/conm/272/04395
  • M. Bhargava, J. Hanke, Universal quadratic forms and the $290$-Theorem, Invent. Math., to appear.
  • A. Cauchy, Démonstration du théorème général de Fermat sur les nombres polygones, Mém. Sci. Math. Phys. Inst. France 14 (1813–1815), 177–220; Oeuvres complètes VI (1905), 320–353.
  • J. H. Conway, Universal quadratic forms and the fifteen theorem, Quadratic forms and their applications (Dublin, 1999) Contemp. Math., vol. 272, Amer. Math. Soc., Providence, RI, 2000, pp. 23–26. MR 1803358, DOI 10.1090/conm/272/04394
  • David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
  • Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
  • L. E. Dickson, Quaternary Quadratic Forms Representing all Integers, Amer. J. Math. 49 (1927), no. 1, 39–56. MR 1506600, DOI 10.2307/2370770
  • William Duke, Some old problems and new results about quadratic forms, Notices Amer. Math. Soc. 44 (1997), no. 2, 190–196. MR 1426107
  • Burton W. Jones, The Arithmetic Theory of Quadratic Forms, Carcus Monograph Series, no. 10, Mathematical Association of America, Buffalo, N.Y., 1950. MR 0037321, DOI 10.5948/UPO9781614440109
  • Benjamin Kane, Representing sets with sums of triangular numbers, Int. Math. Res. Not. IMRN 17 (2009), 3264–3285. MR 2534998, DOI 10.1093/imrn/rnp053
  • J. Liouville, Nouveaux théorèmes concernant les nombres triangulaires, Journal de Mathématiques Pures et Appliquées 8 (1863), 73–84.
  • Melvyn B. Nathanson, A short proof of Cauchy’s polygonal number theorem, Proc. Amer. Math. Soc. 99 (1987), no. 1, 22–24. MR 866422, DOI 10.1090/S0002-9939-1987-0866422-3
  • Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms and $q$-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020489
  • Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606 (German). MR 1503238, DOI 10.2307/1968644
  • Jacob Sturm, On the congruence of modular forms, Number theory (New York, 1984–1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 275–280. MR 894516, DOI 10.1007/BFb0072985
  • W. Tartakowsky, Die Gesamtheit der Zahlen, die durch eine quadratische Form $F(x_1, x_2,\dots , x_s)$, $(s\geq 4)$ darstellbar sind, Izv. Akad. Nauk SSSR 7 (1929), 111–122, 165–196.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11E25, 11E20, 11E45
  • Retrieve articles in all journals with MSC (2010): 11E25, 11E20, 11E45
Additional Information
  • Wieb Bosma
  • Affiliation: Radboud Universiteit, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
  • Email: bosma@math.ru.nl
  • Ben Kane
  • Affiliation: Radboud Universiteit, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
  • Address at time of publication: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
  • MR Author ID: 789505
  • Email: bkane@mi.uni-koeln.de
  • Received by editor(s): December 6, 2010
  • Received by editor(s) in revised form: August 4, 2011, and August 25, 2011
  • Published electronically: September 21, 2012
  • Communicated by: Kathrin Bringmann
  • © Copyright 2012 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 141 (2013), 1473-1486
  • MSC (2010): Primary 11E25, 11E20, 11E45
  • DOI: https://doi.org/10.1090/S0002-9939-2012-11419-4
  • MathSciNet review: 3020835