A MONOMIAL BASIS
FOR THE HOLOMORPHIC FUNCTIONS ON c_0

SEÁN DINEEN AND JORGE MUJICA

(Communicated by Thomas Schlumprecht)

Abstract. For over thirty years it has been known that the monomials form a basis for the n-homogeneous polynomials on certain infinite dimensional Banach spaces. Recently, Defant and Kalton have shown that these are never unconditional. In this article we show that the monomials form a basis for both the holomorphic functions and the holomorphic functions of bounded type on c_0, both with their natural topologies.

INTRODUCTION

Various authors have considered monomial expansions of polynomials defined on infinite dimensional Banach spaces ([1, 2, 4, 8, 10, 13]), and although it has been shown that they form a Schauder basis in some spaces, so far we do not have analogous results for spaces of holomorphic functions. To show that the monomials form a basis for various spaces of holomorphic functions on c_0 we use three different decompositions: S_\ast-absolute decompositions of locally convex spaces (see section 3.3 in [6]), finite dimensional monotone decompositions of a Banach space [4], and a Schauder basis (p. 32 in [3]). We discuss these in section 1. In section 2 we recall the definitions of the different spaces of holomorphic functions and discuss the square order on the monomials. We prove our main result in section 3.

1. LINEAR DECOMPOSITIONS

A sequence of subspaces $\{E_n\}_{n=1}^\infty$ of a locally convex space E is called a decomposition for E if for each $x \in E$ there exists a unique sequence $(x_n)_{n=1}^\infty$, $x_n \in E_n$ for all n, such that

$$x = \sum_{n=1}^\infty x_n := \lim_{n \to \infty} \sum_{j=1}^n x_j.$$

We say that $\{E_n\}_{n=1}^\infty$ is an S_\ast-absolute decomposition of E if E admits a fundamental system \mathcal{N} of semi-norms p such that for any sequence of scalars $(\alpha_n)_{n=1}^\infty$ satisfying $\limsup_{n \to \infty} |\alpha_n|^{1/n} < \infty$ the semi-norm q,

$$q\left(\sum_{n=1}^\infty x_n\right) := \sum_{n=1}^\infty |\alpha_n|p(x_n),$$

is continuous.

Received by the editors March 4, 2011 and, in revised form, July 5, 2011 and September 6, 2011.

2010 Mathematics Subject Classification. Primary 46G20, 32A05.

Key words and phrases. Holomorphic function, Schauder basis, monomial.
This concept coincides with the notion of a global Schauder decomposition given in [7] and [14] and is a variation on S-absolute decomposition discussed in [6], section 3.3.

If each E_n is a finite dimensional space, then the decomposition is called finite dimensional. If E is a normed linear space with norm $\| \cdot \|$, then the decomposition constant is the constant defined as the infimum of all c such that
\[
\| \sum_{j=1}^{n} x_j \| \leq c \| \sum_{j=1}^{m} x_j \|
\]
for all positive integers m and n, $n < m$, and all $x_j \in E_j$. The decomposition constant is always greater than or equal to 1, and if it equals 1 we say that the decomposition is monotone. A renorming generally changes the decomposition constant.

If each E_n is one dimensional and e_n spans E_n, we say that $(e_n)_{n=1}^{\infty}$ is a Schauder basis for E. In this case there exists for each x a sequence of scalars $(x_n)_{n=1}^{\infty}$ such that $x = \sum_{n=1}^{\infty} x_n e_n$, and we use the term basis constant in place of decomposition constant. The linear functional $x \mapsto \sum_{n=1}^{\infty} x_n e_n$ is called the nth coefficient functional and is denoted by e_n^*. If E has an S_*-decomposition, $(E_n)_{n=1}^{\infty}$, then it admits, by (1), a fundamental system N of semi-norms p such that
\[
p(\sum_{n=1}^{\infty} x_n) = \sum_{n=1}^{\infty} p(x_n)
\]
for all $\sum_{n=1}^{\infty} x_n \in E$, $x_n \in E_n$ for all n. If each E_n has a Schauder basis $(e_{n,m})_{m=1}^{\infty}$, then an ordering of $(e_{n,m})_{n,m=1}^{\infty}$ into a sequence is given by a bijective mapping $\phi : N^2 \to N$. We say that the ordering is compatible if
\[
m < \overline{m} \implies \phi(n,m) < \phi(n,\overline{m})
\]
for all n, that is, if it induces on each E_n its original order (see Proposition 4.1 in [6]).

Lemma 1. Let $\phi : N^2 \to N$ denote a compatible ordering. Then for every positive integer j, there exists a finite subset S_j of positive integers and a finite set of positive integers $(k_n(j))_{n \in S_j}$ such that
\[
\{k : 1 \leq k \leq j\} = \bigcup_{n \in S_j} \{\phi(n,m) : 1 \leq m \leq k_n(j)\}.
\]
Moreover, if l is a positive integer, then $S_{j+l} = S_j \cup S$ for some finite subset S of N, disjoint from S_j, and $k_n(j) \leq k_n(j+l)$ for all $n \in S_j$.

Proof. We prove this result by induction on j. Since ϕ is surjective there exists a pair of integers (n_1, m_1) such that $\phi(n_1, m_1) = 1$. Let $S_1 = \{n_1\}$. If $m_1 > 1$, then, since ϕ is injective, we have $\phi(n_1, 1) > 1 = \phi(n_1, m_1)$ and this contradicts (4). Hence $m_1 = 1$ and (5) holds when $j = 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now suppose (5) holds for the positive integer \(j \). This implies, in particular, that

\[
\{1, 2, \ldots, j\} \subset \bigcup_{n \in S_j} \{\phi(n, m) : m \in \mathbb{N}\}.
\]

By surjectivity of \(\phi \) we can find a pair of positive integers \((n_{j+1}, m_{j+1}) \) such that \(\phi(n_{j+1}, m_{j+1}) = j + 1 \). We consider two cases.

If \(n_{j+1} \notin S_j \), then, since \(\phi \) is injective, (6) implies that \(\phi(n_{j+1}, m) \geq j + 1 \) for all \(m \in \mathbb{N} \). If \(m_{j+1} > 1 \), then, since \(\phi(n_{j+1}, m_{j+1}) = j + 1 \), the injectivity of \(\phi \) implies \(\phi(n_{j+1}, 1) > j + 1 \). We then have \(\phi(n_{j+1}, 1) > j + 1 = \phi(n_{j+1}, m_{j+1}) \) and this contradicts (4). Hence \(m_{j+1} = 1 \). Letting \(S_{j+1} = S_j \cup \{n_{j+1}\} \), \(k_n(j) = k_n(j + 1) \) for \(n \in S_j \) and \(k_{n_{j+1}}(j + 1) = 1 \) we obtain (5).

If \(n_{j+1} \in S_j \), let \(S_{j+1} = S_j \). If \(m_{j+1} > k_{n_{j+1}}(j) + 1 \), then, by (6) and since \(\phi \) is injective,

\[
\phi(n_{j+1}, k_{n_{j+1}}(j) + 1) > j + 1 = \phi(n_{j+1}, m_{j+1})
\]

and this contradicts (4). Hence \(m_{j+1} \leq k_{n_{j+1}}(j) + 1 \). By (6), \(\phi(n_{j+1}, l) \leq j \) for all \(l \leq k_{n_{j+1}}(j) \) and, as \(\phi \) is injective, this implies \(m_{j+1} > k_{n_{j+1}}(j) \). Hence \(m_{j+1} = k_{n_{j+1}}(j) + 1 \). If \(n \in S_j, n \neq n_{j+1} \), let \(k_n(j + 1) = k_n(j) \) and let \(k_{n_{j+1}}(j + 1) = k_{n_{j+1}}(j) + 1 \). This implies that (5) holds for \(j + 1 \). By induction this completes the proof of (5) and the remainder of the proof follows easily. \(\blacksquare \)

Theorem 1. Suppose \(E \) has an \(S_\ast \)-decomposition, \(\{E_n\}_{n=1}^\infty \), with fundamental system \(\mathcal{N} \) of semi-norms \(p \) satisfying (3) and that each \(E_n \) has a Schauder basis \((e_{n,m})_{m=1}^\infty \). Then \((e_{n,m})_{n,m=1}^\infty \), with any compatible ordering, is a basis for \(E \) if the basis constants \(c_{p,n} \) of \((E_n, p) \) for \((e_{n,m})_{n,m=1}^\infty \) have at most exponential growth, i.e.,

\[
\limsup_{n \to \infty} c_{p,n}^{1/n} < \infty
\]

for \(p \in \mathcal{N} \).

Proof. Let \(\phi : \mathbb{N}^2 \to \mathbb{N} \) denote a fixed compatible order on \(\mathbb{N}^2 \). By the definitions of decomposition and basis we see that \((e_{n,m})_{n,m=1}^\infty \) spans a dense subspace of \(E \) and hence it suffices to show it is a basic sequence in \(E \). To show this we apply Theorem 6, p. 298, in [9]. Let \(p \) denote a semi-norm on \(E \) satisfying (3). By (1), the semi-norm

\[
q\left(\sum_{k=1}^\infty x_k \right) := \sum_{k=1}^\infty c_{p,n} p(x_n), x_n \in E_n, \sum_{n=1}^\infty x_n \in E
\]

is continuous on \(E \).

Let \((\alpha_k)_{k \in \mathbb{N}} \) denote an arbitrary set of scalars. We now use the notation employed in Lemma 1. If \(j \) and \(l \) are positive integers, then \(S_{j+l} = S_j \cup S \) for some finite subset \(S \subset \mathbb{N} \) disjoint from \(S_j \), and \(k_n(j) \leq k_n(j + l) \) for all \(n \in S_j \). We then have
for all positive integers \(j \) and \(l \),

\[
P\left(\sum_{k=1}^{j} \alpha_k e_{\phi^{-1}(k)}\right) = P\left(\sum_{n \in S_j} \left\{ \sum_{m=1}^{k_n(j)} \alpha_{\phi(n,m)} e_{n,m} \right\}\right)
\]

\[
= \sum_{n \in S_j} p\left(\sum_{m=1}^{k_n(j)} \alpha_{\phi(n,m)} e_{n,m}\right)
\]

\[
\leq \sum_{n \in S_j} c_{p,n} p\left(\sum_{m=1}^{k_n(j+l)} \alpha_{\phi(n,m)} e_{n,m}\right)
\]

\[
\leq \sum_{n \in S_j} c_{p,n} p\left(\sum_{m=1}^{k_n(j+l)} \alpha_{\phi(n,m)} e_{n,m}\right) + c_{n,p} p\left(\sum_{n \in S} \left\{ \sum_{m=1}^{k_n(j+l)} \alpha_{\phi(n,m)} e_{n,m} \right\}\right)
\]

\[
= \sum_{n \in S_{j+l}} c_{p,n} p\left(\sum_{m=1}^{k_n(j+l)} \alpha_{\phi(n,m)} e_{n,m}\right)
\]

\[
= q\left(\sum_{k=1}^{j} \alpha_k e_{\phi^{-1}(k)}\right).
\]

This completes the proof. \(\square \)

Let \(c_0 = \{(z_j)_{j=1}^{\infty} : z_j \in \mathbb{C} \text{ all } j, \lim_{j \to \infty} z_j = 0\} \) and let \(c_0^+ = \{(z_j)_{j=1}^{\infty} \in c_0 : z_j \geq 0 \text{ for all } j\} \). We denote by \((e_j)_{j=1}^{\infty}\) the standard unit vector basis for \(c_0 \) and let \((e_j^*)_{j=1}^{\infty}\) denote the dual unit vector basis for \(\ell_1 = c_0' \). The polydiscs

\[
P_\beta := \{(z_j)_{j=1}^{\infty} \in c_0 : |z_j| \leq \beta_j \text{ all } j\}
\]

form a fundamental system for the compact subsets of \(c_0 \) when \(\beta = (\beta_j)_{j=1}^{\infty} \) ranges over \(c_0^+ \).

2. Polynomials and holomorphic functions

In this section we discuss concepts from infinite dimensional holomorphy and refer to \cite{6} and \cite{11} for details. Our main result concerns holomorphic functions on \(c_0 \).

For each positive integer \(n \) and each Banach space \(X \), let \(\mathcal{P}(^nX) \) denote the space of continuous \(n \)-homogeneous polynomials on \(X \). Endowed with the supremum norm of uniform convergence over the unit ball \(B \) of \(X \), \(\mathcal{P}(^nX) \) is a Banach space.

Let \(\mathbb{N}^{(\mathbb{N})} \) denote the set of all sequences of nonnegative integers which are eventually zero. If \((m_i)_{i=1}^{\infty} \in \mathbb{N}^{(\mathbb{N})}\), we call \(|m| := \sum_i m_i \) and \(l(m) := \text{sup}\{i : m_i \neq 0\} \) the modulus and length of \(m \), respectively, and call the mapping

\[
(z_j)_{j=1}^{\infty} \in c_0 \longrightarrow z^m := z_1^{m_1} \cdots z_n^{m_n} \cdots
\]

a monomial (we use the convention \(0^0 = 1 \)). For positive integers \(n \) and \(k \) let \(\mathcal{P}_k(^n) \) denote the subspace of \(\mathcal{P}(^n) \) spanned by \(\{z^m : l(m) = k, |m| = n\} \). For all \(n \) the sequence \(\{\mathcal{P}_k(^n)\}_{k=1}^{\infty} \) is a finite dimensional decomposition of \(\mathcal{P}(^n) \).
(see [4], and [6], section 4.1). This follows, for \(P \in \mathcal{P}^{(n+1)c_0} \), from the identities

\[
P(\sum_{j=1}^{\infty} z_j e_j) = P(z_1 e_1) + \sum_{k=1}^{\infty} \{ P(\sum_{j=1}^{k-1} z_j e_j) - P(\sum_{j=1}^{k} z_j e_j) \}
\]

\[
= a_1 z_1^{n+1} + \sum_{s=1}^{n+1} a_s z_1^{n+1-s} z_s + \sum_{s=1, t \geq 0, s+t < n+1} a_{s,t} z_1^{n-s-t} z_2^s z_3^t + \cdots
\]

and

\[
Q_{k+1}(\sum_{j=1}^{\infty} z_j e_j) := P(\sum_{j=1}^{k} z_j e_j) - P(\sum_{j=1}^{k+1} z_j e_j) =: R_{k+1}(\sum_{j=1}^{\infty} z_j e_j) \cdot z_{k+1},
\]

where \(Q_{k+1} \in \mathcal{P}_{k+1}^{(n+1)c_0} \) and \(R_{k+1} \in \bigoplus_{j=1}^{k+1} \mathcal{P}_j^{(n)c_0} \). Hence

\[
Q_{k+1} = R_{k+1} \cdot e_{k+1}^*.
\]

We consider different equivalent norms on \(P \in \mathcal{P}^{(n)c_0} \), generated by uniform convergence over bounded polydiscs in \(c_0 \). If \(\lambda_j \in c_0^+ \),

\[
A := \{ (z_j)_{j=1}^{\infty} \in c_0 : |z_j| \leq \lambda_j, j = 1, 2, \ldots \}
\]

is a bounded polydisc in \(c_0 \), and \(Q_k \in \mathcal{P}_k^{(n)c_0} \) for all \(k \), then for all \(s, t \) with \(s < t \), we have, since \(Q_t(\sum_{j=1}^{k} z_j e_j) = 0 \) for all \(l > k \),

\[
\| \sum_{k=1}^{s} Q_k \|_A \leq \| \sum_{k=1}^{t} Q_k \|_A,
\]

and this implies that \(\{ \mathcal{P}_k^{(n)c_0} \}_{k=1}^{\infty} \) is a finite dimensional monotone decomposition of \(\mathcal{P}^{(n)c_0} \) for all \(n \). Using the identity \(Q_{k+1} = R_{k+1} \cdot e_{k+1}^* \) and the fact that holomorphic functions on polydiscs achieve their absolute maxima on the distinguished boundary we see that

\[
\| Q_{k+1} \|_A = \lambda_{k+1} \| R_{k+1} \|_A.
\]

We now define the square order on the monomials in \(\mathcal{P}^{(n)c_0} \). On \(c_0' = \ell_1 \) we use the sequential order inherited from the standard unit vector basis \((e_j^*)_{j=1}^{\infty} \). The square order on the monomials in \(\mathcal{P}^{(n+1)c_0} \) is defined as follows: if \(m = (m_i)_{i=1}^{\infty} \) and \(m' = (m'_i)_{i=1}^{\infty} \) are in \(\mathbb{N}^{(n)} \) and \(|m| = |m'| \), then \(m < m' \) if either \(l(m) < l(m') \) or \(l(m) = l(m') \) and for some positive integer \(s \leq l(m), m_s < m'_s \) and \(m_t = m'_t \) for all \(t > s \).

The square order on the monomials appears naturally when we use the finite dimensional decomposition \(\mathcal{P}_k^{(n+1)c_0} \). Clearly, if \(k < k' \), then the monomials in \(\mathcal{P}_k^{(n+1)c_0} \) precead those in \(\mathcal{P}_{k'}^{(n+1)c_0} \) and the order within \(\mathcal{P}_k^{(n+1)c_0} \) is determined by the order inherited from \(\mathcal{P}^{(n)c_0} \). If \(m \in \mathbb{N}^{(n)} \) and \(l(m) = s \), then there is a unique \(m \in \mathbb{N}^{(n)} \) such that \(z^m = z_2^{m_s} z_3^{m_t} \) for all \(\sum_{j=1}^{\infty} z_j e_j \in c_0 \). Note that \(|m| = |m| - 1 \) and \(l(m) \leq l(m) \). If \(m, m' \in \mathbb{N}^{(n)} \), then \(m < m' \) if either \(l(m) < l(m') \) or \(l(m) = l(m') \) and \(m < m' \).

The square order was introduced by Ryan ([13]), and various authors have shown that the monomials of degree \(n \) with the square order are a Schauder basis for \(\mathcal{P}^{(n)c_0} \). Theorem 2 contains within it yet another proof of this fact, modulo the result of W. Bogdanowicz and A. Pelczyński in 1957 (see [8], p. 81) that polynomials on \(c_0 \) are weakly continuous on bounded sets. The order is important as Defant and
Kalton have shown in [2] that when the monomials of degree \(n \) for any \(n \geq 2 \) form an unconditional basis for the space of \(n \)-homogeneous polynomials on a Banach space \(X \), endowed with the norm of uniform convergence over the unit ball of \(X \), then \(X \) is finite dimensional.

We let \(\mathcal{H}(X) \) denote the space of holomorphic functions on the Banach space \(X \) and let \(\mathcal{H}_b(X) \) denote the subspace of \(\mathcal{H}(X) \) consisting of all \(f \) bounded on bounded subsets of \(X \). Let \(\mathcal{K}(X) \) denote the set of all compact subsets of \(X \). By Proposition 3.18 in [5] the semi-norms

\[
p_K \left(\sum_{n=0}^{\infty} P_n \right) := \sum_{n=0}^{\infty} \|P_n\|_K,
\]

where \(K \in \mathcal{K}(X) \), generate the compact open topology \(\tau_0 \) on \(\mathcal{H}(X) \). When \(X = c_0 \), Ex. 6, p. 15, in [3] implies that the semi-norms

\[
p_\beta \left(\sum_{n=0}^{\infty} P_n \right) := \sum_{n=0}^{\infty} \sup \{ |P_n(z)| : z = (z_j)_{j=1}^\infty \in c_0, |z_j| \leq \beta_j \text{ for all } j \},
\]

where \(\beta = (\beta_j)_{j=1}^\infty \), ranges over \(c_0^+ \), generates \((\mathcal{H}(c_0), \tau_0) \).

For an arbitrary Banach space \(X \), Proposition 4.39 in [5] shows that the \(\tau_\omega \) topology of Nachbin is generated by

\[
p_{K,\alpha} \left(\sum_{n=0}^{\infty} P_n \right) := \sum_{n=0}^{\infty} \|P_n\|_{K+\alpha B_X},
\]

where \(K \in \mathcal{K}(X) \) and \((\alpha_n)_{n=0}^\infty \in c_0^+ \) are arbitrary.

Similarly, the \(\tau_b \) topology on \(\mathcal{H}_b(X) \) is generated by the semi-norms

\[
p(\sum_{n=0}^{\infty} P_n) := \sum_{n=0}^{\infty} \|P_n\|_{\alpha B_{c_0}},
\]

where \(\sum_{n=0}^{\infty} P_n \in \mathcal{H}_b(c_0) \) and \(\alpha \) ranges over \(R^+ \).

If \(X = c_0 \), \(P \) is a monomial, and \(K = \{(z_j)_{j=1}^\infty : |z_j| \leq \beta_j \text{ for all } j\} \), where \((\beta_j)_{j=1}^\infty \in c_0^+ \), then

\[
\|P\|_{K+\alpha B_{c_0}} = \{|P(z)| : z = (z_j)_{j=1}^\infty, |z_j| \leq \beta_j + \alpha\}.
\]

Note that if \([\beta] := \{(z_j)_{j=1}^\infty : |z_j| \leq \beta_j \text{ for all } j\} \), where \((\beta_j)_{j=1}^\infty \in c_0^+ \), then for any \(\sum_{j=1}^{n+1} \alpha_j e_j^* \) we have

\[
(9) \quad \| \sum_{j=1}^{n} \alpha_j e_j^* \|_{[\beta]} = \sum_{j=1}^{n} |\alpha_j \beta_j| \leq \sum_{j=1}^{n+1} |\alpha_j \beta_j| = \| \sum_{j=1}^{n+1} \alpha_j e_j^* \|_{[\beta]}.
\]

This shows that for any space \(X \) with basis \((e_j)_{j=1}^n \) and closed unit ball \(\{\sum_{j=1}^{n} \alpha_j e_j : |\alpha_j| \leq \beta_j \text{ for all } j\} \) the basis constant for \((e_j^*)_{j=1}^n \) is 1.

3. A Schauder basis for \((\mathcal{H}(c_0), \tau_\omega) \) and \((\mathcal{H}_b(c_0), \tau_b) \)

In this section we let \((P_{n,m})_{m=1}^\infty \) denote the monomials of degree \(n \) on \(c_0 \) endowed with the square order and we suppose that the set of all monomials is given a compatible order.

Theorem 2. The monomials with a compatible order are a Schauder basis for \((\mathcal{H}(c_0), \tau_\omega) \), \((\mathcal{H}(c_0), \tau_0) \), and \((\mathcal{H}_b(c_0), \tau_b) \).
Proof. In view of the fundamental systems of semi-norms described in the previous section it suffices, by Theorem 1, to take an arbitrary bounded polydisc

\[A := \{(z_m)_{m=1}^\infty \in c_0 : |z_m| \leq \lambda_m \text{ all } m\}, \]

where \(\lambda_m \geq 0 \) for all \(m \), and to show that the basis constant, \(c_n \), for \((P^n(c_0), \| \cdot \|_A) \) satisfies \(c_n \leq 3^n \) for all \(n \). We prove this by induction. Different choices of \(A \) then prove the required result for the different spaces of holomorphic functions.

The square ordering on \(P^1(c_0) = c_0^{+1} = \ell_1 \) is just the standard ordering of the positive integers and, by (9), the basis constant is 1. We now suppose that \(c_n \leq 3^n \) and aim to show \(c_{n+1} \leq 3^{n+1} \).

Let \((\alpha_m)_{m=1}^\infty \) denote an arbitrary sequence of scalars. Fix positive integers \(s \) and \(t \), \(s < t \). For some nonnegative integer \(k \) we have the expansion

\[\sum_{m=1}^s \alpha_m P_{n+1,m} = \sum_{k=1}^{k+1} \sum_{u=1}^{Q_{n+1,u}} \alpha_m P_{n+1,m}, \]

where \(Q_{n+1,u} := \sum_{1 \leq m \leq s, l(P_{n+1,m})=u} \alpha_m P_{n+1,m} \in P_u(n c_0) \) for \(1 \leq u \leq k+1 \).

\[\text{Note that each } P_{n+1,m} \text{ is a monomial of degree } n+1 \text{ and that if } m_1 < m_2, \text{ then } l(P_{n+1,m_1}) \leq l(P_{n+1,m_2}). \]

If \(s < m \leq t \), then \(l(P_{n+1,m}) \geq k+1 \) and for some integer \(k^* \geq k+1 \),

\[\sum_{m=s+1}^t \alpha_m P_{n+1,m} = \sum_{u=k+1}^{k^*} \sum_{s \leq u \leq t, l(P_{n+1,m})=u} \alpha_m P_{n+1,m}. \]

If

\[Q_{n+1,u}^{*} = \sum_{s \leq u \leq t, l(P_{n+1,m})=u} \alpha_m P_{n+1,m} \]

for \(k+1 < u \leq k^* \), then with the convention \(\sum_{u=k+1}^{k^*} = 0 \) when \(k+1 = k^* \), we have

\[\sum_{m=s+1}^t \alpha_m P_{n+1,m} = \sum_{m=s+1}^t \alpha_m P_{n+1,m} + \sum_{u=k+1}^{k^*} Q_{n+1,u}^{*}. \]

If we let

\[Q_{n+1,k+1}^{*} = Q_{n+1,k+1} + \sum_{s \leq u \leq t, l(P_{n+1,m})=k+1} \alpha_m P_{n+1,m}, \]

then

\[\sum_{m=1}^t \alpha_m P_{n+1,m} = \sum_{m=1}^s \alpha_m P_{n+1,m} + \sum_{m=s+1}^t \alpha_m P_{n+1,m} \]

\[= \sum_{u=1}^{k+1} Q_{n+1,u} + \sum_{s \leq u \leq t, l(P_{n+1,m})=k+1} \alpha_m P_{n+1,m} + \sum_{u=k+1}^{k^*} Q_{n+1,u}^{*} \]

\[= \sum_{u=1}^{k} Q_{n+1,u} + Q_{n+1,k+1}^{*} + \sum_{u=k+1}^{k^*} Q_{n+1,u}^{*} \]

\[= \sum_{u=1}^{k} Q_{n+1,u} + \sum_{u=k+1}^{k^*} Q_{n+1,u}^{*}. \]
This identity and (7) imply that

\[(13) \quad \| \sum_{u=1}^{k} Q_{n+1,u} \|_A \leq \| \sum_{m=1}^{t} \alpha_m P_{n+1,m} \|_A. \]

If \(l(P_{n+1,m}) \leq k\) for \(m < m_0\) and \(l(P_{n+1,m_0}) = k + 1\), then, by (10) and (12),

\[(14) \quad Q_{n+1,k+1} = \sum_{m=m_0}^{s} \alpha_m P_{n+1,m} = e_{k+1}^* \cdot \sum_{m=m_0}^{s} \alpha_m P_{n,m-m_0+1} \]

and

\[(15) \quad Q^*_{n+1,k+1} = \sum_{m=m_0}^{s^*} \alpha_m P_{n+1,m} = e_{k+1}^* \cdot \sum_{m=m_0}^{s^*} \alpha_m P_{n,m-m_0+1} \]

for some integer \(s^*, s \leq s^* \leq t\). Applying in turn (14), induction, (15), and (13), we obtain

\[
\|Q_{n+1,k+1}\|_A = \|e_{k+1}^* \cdot \sum_{m=m_0}^{s} \alpha_m P_{n,m-m_0+1}\|_A \\
= \|e_{k+1}^*\|_A \cdot \| \sum_{m=m_0}^{s} \alpha_m P_{n,m-m_0+1}\|_A \\
\leq 3^n \|e_{k+1}^*\|_A \cdot \| \sum_{m=m_0}^{s^*} \alpha_m P_{n,m-m_0+1}\|_A \\
= 3^n \|e_{k+1}^*\|_A \cdot \sum_{m=m_0}^{s^*} \alpha_m P_{n,m-m_0+1}\|_A \\
= 3^n \| \sum_{m=m_0}^{s^*} \alpha_m P_{n+1,m}\|_A \\
= 3^n \|Q^*_{n+1,k+1}\|_A \\
\leq 3^n \| \sum_{u=k+1}^{k^*} Q^*_{n+1,u}\|_A \\
\leq 3^n \{ \| \sum_{u=1}^{k} Q_{n+1,u} + \sum_{u=k+1}^{k^*} Q^*_{n+1,u}\|_A + \| \sum_{u=1}^{k} Q_{n+1,u}\|_A \} \\
\leq 2 \cdot 3^n \| \sum_{m=1}^{t} \alpha_m P_{n+1,m}\|_A.
\]
This estimate, together with (7) and (13), implies that
\[
\| \sum_{m=1}^{s} \alpha_m P_{n+1,m} \|_A = \| \sum_{u=1}^{k+1} Q_{n+1,u} \|_A \\
\leq \| \sum_{u=1}^{k} Q_{n+1,u} \|_A + \| Q_{n+1,k+1} \|_A \\
\leq (1 + 2 \cdot 3^n) \| \sum_{m=m_0}^{t} \alpha_m P_{n+1,m} \|_A
\]
and hence
\[
c_{n+1} \leq 1 + 2 \cdot 3^n \leq 3^{n+1}.
\]
This completes the proof. \(\square\)

Added in proof. The authors should mention that Ryan has shown that the monomials on \(l_1\), with the square order, form an unconditional basis for \(H(l_1)\) with the compact open topology. See [12].

Our result depended heavily on special features possessed by \(c_0\). Nevertheless, the existence of a monomial basis for the space of holomorphic functions on \(c_0\) facilitates the search for improved estimates, and this should, in turn, make \(c_0\) a more attractive and flexible space in which to find positive results and on which to construct counterexamples.

References

School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland

E-mail address: sean.dineen@ucd.ie

IMECC-UNICAMP, Rua Sergio Buarque de Holanda 651, 13083-859 Campinas, SP, Brazil

E-mail address: mujica@ime.unicamp.br