Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Topological complexity of $ H$-spaces


Authors: Gregory Lupton and Jérôme Scherer
Journal: Proc. Amer. Math. Soc. 141 (2013), 1827-1838
MSC (2010): Primary 55M30, 55S40, 57T99, 70Q05
DOI: https://doi.org/10.1090/S0002-9939-2012-11454-6
Published electronically: October 23, 2012
MathSciNet review: 3020869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a (not-necessarily homotopy-associative) $ H$-space. We show that $ \mathrm {TC}_{n+1}(X) = \mathrm {cat}(X^n)$, for $ n \geq 1$, where $ \mathrm {TC}_{n+1}(-)$ denotes the so-called higher topological complexity introduced by Rudyak, and $ \mathrm {cat}(-)$ denotes the Lusternik-Schnirelmann category. We also generalize this equality to an inequality, which gives an upper bound for $ \mathrm {TC}_{n+1}(X)$, in the setting of a space $ Y$ acting on $ X$.


References [Enhancements On Off] (What's this?)

  • 1. I. Basabe, J. González, Y. Rudyak, and D. Tamaki, Higher topological complexity and homotopy dimension of configuration spaces on spheres, preprint, arXiv:1009.1851v5[math.AT], 2010.
  • 2. O. Cornea, G. Lupton, J. Oprea, and D. Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
  • 3. M. C. Costoya-Ramos, Catégorie de Lusternik-Schnirelmann et genre des $ H_0$-espaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 637-645 (electronic). MR 1933357 (2003f:55005)
  • 4. M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211-221. MR 1957228 (2004c:68132)
  • 5. -, Instabilities of robot motion, Topology Appl. 140 (2004), no. 2-3, 245-266. MR 2074919 (2005g:68166)
  • 6. -, Topology of robot motion planning, Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185-230. MR 2276952 (2008d:68141)
  • 7. Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847 (2002d:55014)
  • 8. L. Fernández-Suárez, A. Gómez-Tato, J. Strom, and D. Tanré, The Lusternik-Schnirelmann category of $ \textrm {Sp}(3)$, Proc. Amer. Math. Soc. 132 (2004), no. 2, 587-595 (electronic). MR 2022385 (2004m:55005)
  • 9. P. Ghienne,The Lusternik-Schnirelmann category of spaces in the Mislin genus of $ \rm Sp(3)$, Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001), Contemp. Math. 316, Amer. Math. Soc., Providence, RI, 2002, pp. 121-126. MR 1962158 (2004b:55006)
  • 10. N. Iwase and A. Kono, Lusternik-Schnirelmann category of $ {\rm Spin}(9)$, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1517-1526 (electronic). MR 2272137 (2008b:55007)
  • 11. I. M. James, Multiplication on spheres. II, Trans. Amer. Math. Soc. 84 (1957), 545-558. MR 0090812 (19:875e)
  • 12. -, On $ H$-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2) 11 (1960), 161-179. MR 0133132 (24:A2966)
  • 13. Y. Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010), no. 5, 916-920. MR 2593704
  • 14. -, Erratum to ``On higher analogs of topological complexity'' [Topology Appl. 157 (5) (2010) 916-920], Topology Appl. 157 (2010), no. 6, 1118. MR 2593724
  • 15. W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975), no. 2, 111-116. MR 0391075 (52:11897)
  • 16. M. Sugawara, On a condition that a space is an $ H$-space, Math. J. Okayama Univ. 6 (1957), 109-129. MR 0086303 (19:160c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55M30, 55S40, 57T99, 70Q05

Retrieve articles in all journals with MSC (2010): 55M30, 55S40, 57T99, 70Q05


Additional Information

Gregory Lupton
Affiliation: Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115
Email: G.Lupton@csuohio.edu

Jérôme Scherer
Affiliation: SB Mathgeom, Ma B3 455, Station 8, EPFL, CH-1015 Lausanne, Switzerland
Email: jerome.scherer@epfl.ch

DOI: https://doi.org/10.1090/S0002-9939-2012-11454-6
Keywords: Lusternik-Schnirelmann category, sectional category, topological complexity, $H$-space
Received by editor(s): June 16, 2011
Received by editor(s) in revised form: September 2, 2011
Published electronically: October 23, 2012
Additional Notes: The first author acknowledges the hospitality and support of EPFL and the support of the Cleveland State University FRD grant program.
The second author is partially supported by FEDER/MEC grant MTM2010-20692. Both authors acknowledge the support of the Swiss National Science Foundation (project IZK0Z2_133237).
Communicated by: Brooke Shipley
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society